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1 Abstract

Neuronal assemblies are fundamental building blocks of brain function (e.g. memory, spatial
navigation, eye fixation, etc.). However, the principles underlying the connectivity patterns
that support their function have remained elusive. The optic tectum of the zebrafish larva
is organized into distinct functional neuronal assemblies. These assemblies display all-or-none
preferred activation states and inhibitory competition, mechanisms that improve the decoding
of visual information. Here, we combined light-sheet microscopy to capture the dynamics of
large neuronal networks (∼2,000 neurons) in the optic tectum; genetic cell-type markers for
studying the physiological and functional properties of tectal assemblies; and techniques from
topological data analysis to study the dynamic connectivity patterns that enable the emergence
and functional role of the neuronal assemblies. We found that during spontaneous activations,
tectal assemblies maintain a tight and stable ratio of E-I activity despite the large increase in
activity. Topological analysis of the spontaneous activations indicated a low-rank organization
of the assemblies and a discrete number of temporal activation patterns. Finally, we observed
that the cholinergic system can modulate the topological features of the assemblies to alter their
functional role.

2 Introduction

Across brain regions, neuronal circuits display different structural architectures, dynamics, and
functional roles, typically organized according to neuronal assemblies (groups of highly correlated
neurons). Neurons within an assembly work together as a coherent functional unit. Assemblies
can be involved in sensory processing, the generation of motor behaviors, or cognitive functions
[1, 2, 3, 4]. Coordinated assemblies can lead to precise temporal sequences of neural activity,
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such as the rhythmic patterns and oscillations of Central Pattern Generators (CPGs) which
control repetitive motor behaviors (e.g. walking, breathing, or swimming) [5, 6, 7]. Neuronal
assemblies also display attractor-like dynamics; they are based on recurrent connectivity and
often display temporal dynamics that settle into stable, self-sustained activity patterns (attrac-
tors). This ability to converge to and maintain specific activity states allows these circuits to
perform functions such as pattern completion or input discrimination. Attractor-like circuits
have been used to model short-term memory [8, 9, 10]; orientation tuning in primary visual
cortex [11, 12, 13]; eye fixation [14, 12, 15, 16, 17]; spatial navigation [18, 19, 20, 21]; and have
been proposed as a mechanism for faster odor recognition in the olfactory bulb [22]. Recently,
experimental evidence for attractor circuits has been observed in the head direction system of
drosophila [23], the entorhinal cortex of rodents [24], and somatosensory cortex [25]. Studies of
mammalian hypothalamus have also provided evidence of line attractors encoding mating dy-
namics and an affective internal state [26, 27]. Despite these advances, the principles underlying
the connectivity structure mediating the functional role of neuronal assemblies remain elusive.

In zebrafish, the optic tectum plays a key role in detecting the physical properties of visual
stimuli (position, size, and direction), processing them, and generating goal-directed motor
behaviors. Its ongoing spontaneous activity is organized according to neuronal assemblies. These
assemblies mimic the neuronal responses to prey-like visual stimuli, and are organized according
to the tectum’s retinotopic map [28, 29, 30]. Their spontaneous activations represent all-or-none
preferred network states shaped by mutual inhibition, characteristics reminiscent of winner-take-
all dynamics [28]. Using mutant zebrafish larvae with abnormal functional connectivity in the
tectum, it was possible to test the effect of the tectal assemblies on visual responses. It was
found that the tectal assemblies generate sustained activity and pattern completion, improving
stimulus discrimination, visual resolution, and prey-capture behavior [31].

One of the challenges of studying neuronal assemblies is that their structure can be obscured
by noise as well as nonlinear features and artifacts of the data. Mathematical methods from
algebraic topology allow us to circumvent some of these problems. In recent years, there has
been an increased interest in the use of topological data analysis of high-dimensional neural
data: (i) topology provides qualitative geometric information, (ii) topological features can be
more robust to noise, (iii) topology is a tool for converting local features into global properties,
and (iv) topological summaries of data can span a range of values for a parameter, such as
a threshold, yielding results that are less sensitive to arbitrary parameter choices [32, 33, 34].
Topological methods can also capture properties of higher-order interactions that cannot be
captured by other methods [35], and can be used to compute novel matrix invariants that are
unaffected by common nonlinearities [36]. For these reasons, we turned to topological analyses to
enhance our understanding of the spatiotemporal functional interactions of neuronal assemblies.

Here, we used the zebrafish larva expressing GCaMP6f pan-neuronally in combination with
light-sheet microscopy, genetic and immunostaning labeling to determine the neurotransmitter
identity of the recorded neurons, and a topological approach to study the structure of neuronal
assemblies in the optic tectum. We identified glutamatergic, GABAergic and cholinergic cell
types, and found that the tectal assemblies displayed an overrepresentation of excitatory neurons
as compared to the overall tectal circuit. During the spontaneous activations of neuronal assem-
blies, the activity of the GABAergic and glutamatergic populations both increased, but the E-I
ratio remained stable. Topological analysis of neuronal correlations within assemblies revealed
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a low-rank functional connectivity structure reminiscent of attractor circuits. This structure
was most pronounced during spontaneous activations. We propose that high-dimensional neural
activity in the optic tectum collapses to distinct, low-dimensional subspaces during assembly
activations.

The activity of cholinergic neurons was associated with longer spontaneous activations of
the assemblies. Since cholinergic neurons are usually associated with attention, we suggest that
they increase visual detection by strengthening the functional connectivity of neuronal assemblies
involved in spatial visual responses.

Results

Neurotransmitter identity of tectal assemblies

To learn about the organizational principles underlying neuronal assemblies in the optic tectum,
we first quantified the cell-type composition of the tectal assemblies. In zebrafish larvae, the
optic tectum is composed of three cell types according to their neurotransmitter identity: gluta-
matergic, GABAergic and cholinergic [37, 38, 39, 40]. To identify cell types, we used light-sheet
microscopy in combination with double transgenic zebrafish larvae expressing pan-neuronally
GCaMP6f and mCherry under a glutamatergic promoter (see Methods). This approach enabled
us to monitor the spontaneous activity of the majority of tectal neurons at high acquisition
rates (15Hz), and identify the glutamatergic neurons. GABAergic and the cholinergic neurons
were identified using immunostaining following the Ca2+ imaging experiments (Anti-ChAT and
Anti-Gad1b antibodies, see Methods). We recorded spontaneous activity of 12 larvae (2169±323
neurons per larva) across the entire optic tectum, in the absence of sensory stimuli. 10 of the
12 larvae were successfully immunostained to be able to distinguish all three cell types: gluta-
matergic, GABAergic, and cholinergic (Figure 1a).

To detect the neuronal assemblies in the optic tectum, we combined principal component
analysis (PCA) and factor analysis (PROMAX) [28, 41, 42, 29] (see Methods). Some assemblies
were composed of neurons scattered in both hemispheres of the optic tectum (sparse assemblies)
while others were topographically compact, mainly composed of neighboring neurons (compact
assemblies) [28]. Altogether, we found 1090 sparse assemblies and 517 compact assemblies in the
10 immunostained larvae. The compact assemblies were identified by examining the distributions
of physical distances between neurons in each assembly (see Methods). In this study, we focused
only on the compact assemblies (hereon referred as assemblies) since their functional role has
been previously investigated [28, 43, 29]. These assemblies were composed of 39.39%± 11.65%
of the total recorded neurons, and had an average of 31.54 ± 17.85 neurons.

Quantification of the cell-type composition of the optic tectum showed that the tectal circuit
is composed of glutamatergic (55.50%± 1.65%), GABAergic (43.47%± 1.78%), and cholinergic
(1.31% ± 0.45) neurons (Figure 1b). However, within the assemblies the cell-type distribution
was skewed towards excitation: glutamatergic 65.88%± 13.46%, GABAergic 32.62%± 13.13%,
and cholinergic 1.93% ± 2.79% (see also Supp. Figure 1b-d). Despite the low proportion of
cholinergic neurons, they were located along the retinopic axis of the tectum (Figure 1d and
Supp. Figure 1a), with none or a few neurons per assembly. Assemblies with cholinergic neurons
represented 44.76% of the total number of assemblies.
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To learn about the functional connectivity patterns across neurons of different cell types
within the neuronal assemblies, we computed Pearson’s pairwise correlations between assembly
neurons during spontaneous activations (n=3785 activations of N=438 assemblies). Activations
were detected using criteria that capture the fraction of total population activity contributed by
the assembly (see Methods). We found that neurons with the same neurotransmitter identity
were similarly and highly interconnected (glutamatergic: 0.28± 0.26 , GABAergic: 0.27± 0.25,
cholinergic: 0.26±0.27, P > 0.05, Mann–Whitney U test, Figure 1c). The correlations between
the cholinergic neurons and the GABAergic population were not significantly different than those
of the GABAergic and glutamatergic ones (0.24±0.26, P > 0.05, Krustal-Wallis). However, the
correlations between the cholinergic and glutamatergic neurons were significantly lower (0.19±
0.29, P < 0.05, Krustal-Wallis). The reduced functional correlations between the cholinergic
and glutamatergic populations with respect to the other populations may suggest that their
interactions are only occasional (e.g. cholinergic modulation of the glutamatergic population).

Dynamics of different cell types during the activation of tectal assemblies

To further study the functional role of the different cell types during spontaneous activation of
the neuronal assemblies, we analyzed the temporal dynamics of the activity of the three cell-
type populations. Spontaneous activations occur when a substantial proportion of the neurons
in an assembly are active (Figure 2a, top); we detected onsets and offsets of activations using
a data-driven algorithm (see Methods). We found that the mean number of active glutamater-
gic neurons was significantly higher than that of GABAergic neurons, and both were signifi-
cantly higher than the mean of cholinergic neurons (peak values for glutamatergic: 5.26± 2.13,
GABAergic: 2.42± 1.19, cholinergic: 0.38± 0.14; KS tests P < 0.0001, Figure 2b).

Despite the larger number of glutamatergic neurons involved in the spontaneous activation
of the assemblies, the differences in the mean ∆F/F activity of each cell-type population were
not statistically significant (GABAergic: 0.52±0.25, glutamatergic: 0.52±0.27, and cholinergic:
0.58± 0.43; Figure 2c). However, the variability of the cholinergic population was significantly
larger than that of the GABAergic and glutamatergic populations (Ansari-Bradley test: P <
0.001 for both cases).

We then calculated an excitatory-inhibitory (E-I) ratio, E/(I +E), around the spontaneous
activations (see Methods). We found that despite the difference between the number of active
excitatory and inhibitory neurons, the E-I ratio remained constant during the entire period of
the spontaneous activation of the assemblies (P > 0.05, Krustal-Wallis test; Figure 2d). We also
observed a slight imbalance between two and one seconds before the onset of activations: the
E-I ratio was slightly, but significantly, lower than in the period from five to nine seconds after
the onset of activations (before (-2s to -1s): 0.67± 0.06, after (5s to 9s): 0.69± 0.06, P < 0.001,
Kruskal-Wallis followed by Dunn’s test).

To further assess the internal structure of assemblies during the spontaneous activations, we
computed the normalized entropy for each cell-type population (see Methods). High entropy
indicates that the activity patterns are more variable, while low entropy indicates that the
repertoire of activity patterns is more limited. We observed that the entropies of the three
populations during the assembly activations reached their highest values shortly after the onset of
activations, with the glutamatergic neurons having the highest entropy (mean maximal entropy
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of the glutamatergic neurons: 0.45±0.25; GABAergic neurons: 0.30±0.30; cholinergic neurons:
0.15± 0.33; Figure 2e).

Although the spontaneous activations of the neuronal assemblies were dominated by exci-
tation, the E-I ratio remained very stable, consistent with the role of inhibition mainly serving
to counterbalance excitation. In contrast, the small number of cholinergic neurons, but with a
large and variable ∆F/F, suggests that they may play a modulatory role. The entropy of the
spontaneous activations displayed a sharp transition represented by the increase in the number
of potential activation patterns (active states). This is mainly evident among the glutamatergic
neurons, while the GABAergic population showed a more constrained repertoire of activation
patterns. This suggests that although the assemblies are a functional unit, they may be com-
posed of different subgroups of neurons.

To test this hypothesis, we performed community analysis of networks obtained by thresh-
olding assembly correlations to achieve different edge densities (ρ = 0.75, 0.5, and 0.25; Supp.
Figure 1f). Only in the sparser networks, with ρ = 0.25, did we observe significant differences
with Erdös-Rènyi random graphs (the assembly networks had more communities). This com-
munity analysis was not very informative, however, as it was highly sensitive to the choice of
thresholds. To avoid this dependency on the choice of threshold, we decided to analyze assembly
correlations using topological data analysis (TDA) [34].

Topological analysis of neuronal assemblies

TDA approaches are sensitive to features such as the higher-order organization of pairwise
correlations, going beyond what can be detected using linear algebra tools alone (e.g. PCA, SVD)
[44, 35, 45, 24, 34]. In this study we used the clique topology pipeline [36, 46, 34], illustrated here
for a small correlation matrix (Figure 3a-c). From a symmetric matrix of pairwise correlations,
we obtain a filtration of clique complexes, which are simplicial complexes determined by cliques
in an underlying graph. Each clique complex in the filtration has a topological signature given
by three integers, (β0, β1, β2), called Betti numbers. The resulting topological features across
the filtration can be packaged into a collection of Betti curves, βi(ρ) (Figure 3c; see Methods).
Because the filtration depends only on the relative ordering of the correlation values, the Betti
curves are matrix invariants that do not change under nonlinear rescalings of the correlations
– provided their relative order is preserved [36]. Therefore, these TDA signatures capture the
relative pattern of correlations, independently of their overall magnitudes.

The Betti curves in Figure 3c illustrate several general phenomena. The β1 (blue) and β2
(red) curves always start at zero, may rise for intermediate edge densities, and return to zero
by the end of the filtration (ρ = 1). In contrast, β0 (gray) always begins at a positive integer
equal to the size of the matrix, and decreases monotonically, as adding edges can only reduce
the number of connected components. In this sense, a plateau in β0 indicates a sub-cluster
structure with higher correlations occurring within rather than across connected components
(see Supp. Figure 2). Since the complete graph is always connected, β0 always decreases to
1 by the end of the filtration. In this example, β1 increases to one with the emergence of the
homology 1-cycle (bounding a 2-dimensional hole) at ρ = 6

15 = 0.4, and drops down to zero when
the 1-cycle disappears at ρ = 10

15 = 0.67, both highlighted with vertical dashed green lines. In
contrast, β2 appears for only one filtration step, at ρ = 12

15 = 0.8, and corresponds to a homology
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2-cycle (bounding a 3-dimensional void). When correlations come from time series data, β1(ρ)
can reflect sequential dynamics where neurons are activated in a repeating temporal sequence
(see Supp. Figure 3), while β2(ρ) can reflect dynamics on a sphere or torus [24]

As mentioned above, Betti curves are distinct from more traditional methods of matrix
analysis (e.g., singular values, PCA) because they are invariant to monotone transformations of
the correlations while highly sensitive to their higher-order organization [36]. To illustrate this
fact, we compared Betti curves to correlation histograms and singular values for four related
matrices: a pairwise correlation matrix C = [Cij ] of neurons within an assembly, the same matrix
with neurons sorted according to hierarchical clustering, a nonlinear monotone transformation
of the matrix with entries [f(Cij)] (affecting the values of the correlations but not their relative
ordering), and a shuffled matrix containing the same set of pairwise correlations, but scrambling
the higher-order structure (Figure 3d, see Methods). For this and all subsequent analyses, we
computed pairwise correlations of neurons as simple inner products:

Cij =
nbins∑

k=1

xi(tk)xj(tk),

where xi(tk) denotes the deconvolved Ca signal of neuron i at time tk, and the sum is computed
over different subsets of time bins depending on the analysis (see Methods).

Note that Betti curves, the histogram of correlations, and singular values are all invariant
under reordering of neurons in the correlation matrix (Figure 3d, left two columns). However,
only the Betti curves are invariant to the nonlinear transformation (third column); the singular
values and correlation histograms change significantly. On the other hand, the Betti curves are
very sensitive to shuffling the correlations, which changes their organization, while the histograms
are not affected by shuffling (fourth column). In summary, Betti curves are uniquely sensitive
to the topological organization of the network correlations, rather than to their precise values.

Betti curves distinguish real versus randomized assemblies. To investigate the structure
of the functional correlations underlying tectal assemblies, we computed Betti curves for a large
number of assembly correlation matrices. For this analysis, we used all 12 larvae, including the
two where immunostaining was unsuccessful, and restricted our analysis to assemblies with at
least 20 neurons. We compared the Betti curves of assemblies to those from two families of control
matrices: correlations of randomized assemblies and shuffled correlations. Correlation matrices
for randomized assemblies were obtained by selecting random subsets of neurons matching the
number of neurons in real assemblies; shuffled correlation matrices were obtained as entrywise
shuffles of real assembly correlation matrices, as in Figure 3d (see Methods).

First, we looked at β0 curves, which are indicative of subcluster structure within assemblies.
We observed that the average β0 curves across assemblies (black) and randomized assemblies
(yellow) decay more gradually with increasing edge density than that of correlation shuffles
(green) (Figure 4a). This suggests that the correlations in the data have a subcluster structure
that is not present in the shuffles. Next, we looked at higher-order Betti curves. Unlike β0, the
average β1 and β2 curves for the assemblies were very close to zero across all edge densities ρ
(Figure 4b, left). In contrast, randomized assemblies had higher average β1 and β2 curves (Figure
4b, middle), while shuffled correlations exhibited average β1 and β2 curves that were orders of
magnitude higher than those from the data (Figure 4b, right). These trends in average Betti
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curves across real versus randomized assemblies are consistent across larvae (see Supp. Figure
4). Thus, Betti curves allow us to detect the functional connectivity structure of assemblies.

To quantify the above observations, we calculated the integrated Betti values,
∫
βi, corre-

sponding to the areas under the Betti curves [36] (see Methods). The integrated Betti values
capture features of Betti curves. For example, if β0 decays to 1 faster,

∫
β0 will be smaller. How-

ever, the integrated Betti values may have some effects due to the sizes of the matrices. Thus,
it is important that the assembly, randomized assembly, and shuffled correlation matrix families
have matching distributions of sizes (see Supp. Figure 5-6). To account for specific effects of
assembly size on β0, we used a normalized integrated Betti 0 value,

∫
β0 (see Methods). This

normalization allows us to more fairly compare the decay rates of β0 in order to assess subcluster
structure. Notice that in Figure 4d, β0 decays as a function of edge density more slowly as we
move from assembly 1 to assembly 4 (left to right); this is reflected in the increase in

∫
β0.

Consistent with our observations from Figure 4a, the distribution of
∫
β0 across assembly

correlations was significantly different from those of shuffled controls (assemblies: 0.121± 0.035,
randomized assemblies: 0.138 ± 0.035, shuffled corr. matrices: 0.034 ± 0.011, P ≪ 0.001, two-
sample two-way KS-test, Figure 4c, left). Moreover, the distribution of

∫
β1 for assemblies

and randomized assemblies were significantly different (assemblies: 0.023 ± 0.09, randomized
assemblies: 0.092 ± 0.123, P ≪ 0.001, two-sample two-way KS-test, Figure 4c, right). We did
not compare

∫
β2 as it was zero for the majority of assemblies. We conclude that the Betti

curves β0(ρ) and β1(ρ) can distinguish the structure of assembly correlations from the controls.

Spontaneous activations of assemblies exhibit low-rank structure

To study the topological structure of the correlations of tectal assemblies, we analyzed a total
of 4595 spontaneous activations across 435 assemblies with at least 20 neurons and at least 2
activations (see Methods, Figure 5a). On average, these assemblies had 10.6± 8.5 spontaneous
activations, and were active for a total of 26.5 ± 22.6 s across the entire hour-long recordings.
The average duration of these spontaneous activations was 2.8± 1.8 s.

To study the structure of the assemblies during periods of spontaneous activation (‘on’) and
non-activation (‘off’), we compared the Betti curves during the ‘on’ and ‘off’ periods (see Figure
5b, see Methods). We observed only a small significant difference between the distributions
of

∫
β0 for the ‘on’ periods versus ‘off’ periods, (‘on’: 0.12423 ± 0.04137, ‘off’: 0.12135 ±

0.03238, P ∼ 0.01, two-sample two-way KS test). However, the
∫
β1 for the ‘on’ periods were

significantly smaller than those from the ‘off’ periods (‘on’: 0.00145 ± 0.01094, ‘off’: 0.09246 ±
0.13060, P ≪ 0.001, two sample KS-test).

Next, we investigated whether the Betti curves were indicative of low-rank structure, and thus
low-dimensional dynamics. Because of the nonlinearities in data acquisition and preprocessing,
this structure cannot be seen via traditional linear algebra methods such as singular values (Supp.
Figure 7). Recently, it was proven that for positive symmetric matrices of rank one, all Betti
curves vanish except for β0(ρ) [47]. To understand what other types of correlation structures
Betti curves can detect, we computed Betti curves for different types of matrices. Specifically,
we considered two classes of random matrix models: ‘mixed’ and ‘positive’ matrices for low and
high rank controls (see Methods). The ‘mixed’ model is the most standard (default) model for
generating random low rank matrices; however, the ‘positive’ model, with matrices generated
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from random vectors whose entries are all positive, is in principle a better control for our calcium
imaging data since our time series values were always nonnegative. Additional analyses further
confirmed that the ‘positive’ model is the better control family (see Supp. Figure 8).

The ‘mixed’ models had non-trivial β1 and β2 curves at the higher ranks while β0 displayed
some variability (Figure 5c, left). In contrast, ‘positive’ matrices had β1 and β2 curves that
vanished in each rank (Figure 5c, right). To further assess the structure of the assembly corre-
lations identified by the Betti curves, we calculated the distributions of integrated Betti values
of the assemblies for the ‘whole’ recording, during the ‘on’ periods, during the ‘off’ periods, and
for randomized assemblies (‘rand’). We compared these distributions against those of synthetic
‘mixed’ and ‘positive’ matrix models of varying dimensions or ranks (Figure 5d). In addition to
low ranks, we considered three high-dimensional controls (see Methods): an ensemble of ranks
20-90 (the sizes of the neural assemblies), a model of underlying dimension 500 (the approximate
number of time bins for all ‘on’ periods), and another of dimension 54,000 (the total number of
time bins in the recording). These last two models produce correlations coming from random
time series of equal lengths to those used to compute the assembly correlations. To compare the
experimental observations to the different models, we then computed the Wasserstein distances
between the distributions for the data correlations and models (Figure 5e). We found that

∫
β0

was not informative about the structure of the correlations in different contexts (‘whole’, ‘on’,
‘off’, ‘rand’). However, using

∫
β1 and

∫
β2 it was possible to separate the different contexts.

The ‘whole’ and ‘on’ activations showed
∫
β1 and

∫
β2 similar to those for both the ‘mixed’ and

‘positive’ low-rank models. In contrast, the distributions of
∫
β1 and

∫
β2 for the ‘off’ and ‘rand’

contexts were only similar to high rank positive models.
These results suggest that during the activation periods (‘on’), the assembly functional con-

nectivity reflects an especially low-rank structure, while between activations (‘off’) the structure
is similar to that of randomized assemblies. Despite the fact that the ‘on’ periods are a small
fraction of the total length of the recording, the structure of correlations computed from the
entire recording (‘whole’) more closely resembled that of the ‘on’ rather than the ‘off’ periods.
This indicates that there was little contribution to the structure of assembly correlations outside
the activation periods. Note that traditional singular value analyses did not reflect low rank
structure during spontaneous activation (Supp. Figure 7).

Dynamics of the topological structure of the assemblies

To investigate changes in the structure of correlations around the onset of activations, we com-
bined the clique topology pipeline with a sliding window analysis. Specifically, we computed the
integrated Betti values

∫
β0(t) and

∫
β1(t) for correlations using a 0.5 s causal sliding window

that runs from 2s before to 2s after the onset of each spontaneous activation (Figure 6a, see
Methods).

The average integrated Betti time series
∫
β0(t) and

∫
β1(t) showed very different dynamics

before and after activation onset (Figure 6b).
∫
β0(t) displayed a gradual increase until reaching

a plateau at the onset of activation. In contrast,
∫
β1 decreased to almost zero just before

activation onset. These trends were independent of the choice of sliding window size, and
were consistent across larvae (Supp. Figure 9). The standard deviations prior to activation
onset were large for both

∫
β0(t) and

∫
β1(t), and remained large during activations for

∫
β0(t)
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but decreased significantly for
∫
β1(t) (Figure 6b, top right). This suggests that spontaneous

activations may display a variety of different dynamic activation patterns. Indeed, when we
looked at the dynamic structure of individual activations, we observed different patterns of∫
β0(t) (Figure 6b, bottom).
It is worth emphasizing that the dynamics of

∫
β0(t) and

∫
β1(t) observed in Figure 6b

reflected a reorganization of the assembly correlation structure around activation onset, not a
strengthening of the correlation values. In fact,

∫
β0(t) and

∫
β1(t) remained constant under

amplification of the correlations without reorganization (Figure 6c).
To investigate whether the neuronal assemblies show a discrete number of potential dynamic

structures during the spontaneous activations, we performed clustering of the
∫
β0(t) activation

profiles (see Methods). For this analysis, we only used
∫
β0(t) because

∫
β1(t) displayed very

little variability during activations. Using k-means clustering, we found that the
∫
β0(t) dynam-

ics across all activations could be classified into six different groups (Figure 7a, see also Supp.
Figure 10-11). The clusters we found had average

∫
β0(t) profiles that echoed the previously ob-

served features of individual activations in Figure 6b. PCA analysis confirmed that the clusters
grouped together activations based on features such as the rise (PC2) and fall (PC3) of

∫
β0

around the activation onset (Figure 7b). We observed that all six clusters can be represented in
the activations of a single assembly; and, indeed, they all arose in each of the 12 larvae (Supp.
Figure 12).

To learn about the mechanisms underlying the emergence of the different dynamic structures
seen in the activation clusters (Figure 7a), we built a set of toy models of assembly dynamics
where we varied the amplitudes of the neurons’ activity, and their synchrony (see Methods).
We selected five models of varying amplitude and synchrony of neural spikes for assemblies of
30 neurons. Then, we calculated their

∫
β0(t) dynamics (Figure 7c). These models produced∫

β0(t) profiles similar to the variety observed across the tectal assembly activations (Figure 6b,
Figure 7a). This suggests that the dynamic structure of the assembly activations can follow
several activation patterns. For example, cluster 1 (Figure 7a, red) could be explained by a
synchronous activation with neurons firing at similar amplitudes; cluster 2 (orange) could be
explained by asynchronous activations while conserving the same amplitudes; cluster 3 (yellow)
could be explained by synchronous activations with neurons firing at different amplitudes; and
clusters 4 and 5 (green and blue) could be explained by rapid sequential firing of neurons at a
conserved amplitude. However, cluster 6 (purple) did not have a dynamic profile matching any
of the variants of the toy model.

To learn about the biological significance of the different types of activation dynamics, we
computed for all six clusters the assembly sizes, activation lengths, and participation ratios
(the fraction of active neurons in the assembly). We found that all clusters involved assemblies
of similar sizes. However, clusters 4-6 showed longer activation lengths and larger assembly
participation ratios (Figure 8a). We also found differences between clusters 1-3 versus 4-6 when
considering the change in participation ratio between the periods prior to and after activation
onset (‘pre’ and ‘post’, Figure 8b left). However, all clusters had similar E-I ratios prior to
activation onsets, which were maintained during the activations (P < 0.1, ANOVA, p (pre):
0.224, p (post): 0.180, Figure 8b right).

Next, we studied the effect of cholinergic activity on the properties of assembly activation
clusters. Given the particular spatial distribution of the cholinergic neurons along the retinotopic
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tectal axis (Figure 1d), the presence of few cholinergic neurons within each of the assemblies
(Figure 1b), and their strong but variable participation during spontaneous activations (Figure
2a and c), we hypothesized that cholinergic neurons could play a modulatory role in the dynamics
of the tectal assemblies.

The fraction of activations per cluster involving cholinergic neurons diverged across clusters:
despite being similar pre-onset, clusters 4-6 exhibited increased cholinergic activity post-onset
while clusters 1-3 did not (Figure 8c, left; P < 0.01, ANOVA, P (pre): 0.041, P (post): 2.425e-
99; see Methods). We also found that, across clusters, the change in cholinergic participation
from pre- to post-activation onset (∆ chol activity) did not correlate with average assembly size
(Figure 8c, second panel; Pearson corr: r = 0.84, p-value 0.0336). However, ∆ chol activity did
correlate with the average activation lengths and participation ratios (r = 0.93 and r = 0.98,
respectively, P < 0.01; Figure 8c, right panels). This suggests that the participation of cholin-
ergic neurons during the spontaneous activation of tectal assemblies modulates the number of
recruited neurons and the duration of spontaneous activations (see also Supp. Figure 12). These
results are consistent with a scenario where neural activity collapses onto lower-dimensional sub-
spaces during assembly activations, yet within each assembly subspace the individual activations
can exhibit a variety of distinct dynamic profiles (activation clusters) modulated by cholinergic
activity (Figure 8d).

Discussion

The tectal circuit is organized according to neuronal assemblies distributed along the circuit’s
retinotopic map [28, 43, 29, 31]. The activations of tectal assemblies represent all-or-none pre-
ferred network states shaped by reciprocal inhibition. These characteristics promote an increase
in strength and duration of visual responses, acting as a top-down fovea to improve visual
resolution and prey-capture behaviors [31]. To learn about the structural connectivity princi-
ples underlying the functional role of these tectal assemblies, we identified the neurotransmitter
identity of the neurons composing them (cholinergic, GABAergic and glutamatergic) and inves-
tigated their activity using a topological data analysis approach.

We found that assemblies have a higher E-I ratio as compared to the entire tectal circuit,
indicating that assemblies correspond to highly excitable subcircuits with inhibition serving
mainly to counterbalance excitation, as in a balanced state [48, 49, 50, 51, 52]. The cholinergic
neurons were distributed along the tectal retinotopic axis, resulting in a majority of tectal
assemblies containing at most a handful of cholinergic neurons [53, 40]. Despite a stable E-
I ratio, we found that the structure of neuronal correlations undergoes a rapid and dynamic
reorganization near the onset of assembly activations. This was evident from our topological
analyses and the rise in entropy of the assembly activity patterns at the start of activations.

For the topological analyses of functional connectivity, we used Betti curves to quantify the
topological features of pairwise correlations of tectal assemblies. Like other methods from topo-
logical data analysis, Betti curves can be used to uncover intrinsic higher-order geometric and
topological organization of neural activity and are remarkably robust to noise and the underly-
ing nonlinearities of the data [36, 46, 34]. Comparison between the Betti curve results for the
assemblies with those of various synthetic models of different ranks showed that assembly corre-
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lations during activations (‘on’ periods) are consistent with a low-rank functional connectivity
structure [47]. On the other hand, outside of activations (‘off’ periods) the assembly corre-
lations more closely resembled those of randomized assemblies and were more consistent with
high-dimensional comparison models. Notably, the underlying low-rank structure we detected
via topological methods is not visible with traditional spectral methods because of nonlinearities
in the calcium imaging data [47] (Supplementary Figure 7).

Several studies have suggested that low-rank connectivity matrices provide a mechanism for
generating low-dimensional dynamics, and that this in turn can lead to attractor-like dynamics
[54, 55]. More generally, low-dimensional dynamics have been reported in a variety of neural
systems, particularly when the animal is engaged in a specific task [56, 57]. The picture that
emerges from our work, however, is not that of a network with a single low-dimensional manifold
of neural activity. Instead, each assembly activation moves the tectal network activity towards
a distinct low-dimensional subspace corresponding to the assembly. The reduction in dimen-
sionality is two-fold: first, there is a reduction from the tectal circuit to the assembly (∼20-90
dimensions as opposed to thousands, representing the spatial location of the visual stimulus);
second, there is a further reduction to the low-rank structure of the pairwise correlations within
each tectal assembly. In other words, the population activity is high-dimensional, but individual
assembly activations (whether spontaneous or stimulus-driven) push the network into distinct
low-dimensional dynamic regimes (Figure 8d).

To investigate the dynamics of the topology of assembly activations in more detail, we im-
plemented a novel TDA approach using integrated Betti time series,

∫
β0(t) and

∫
β1(t), which

track the temporal changes in assembly correlations around activation onsets (Figure 7). First,
we found that both the

∫
β0(t) and

∫
β1(t) time series were highly stereotyped across all acti-

vations, and that activations could be clustered into six distinct groups using the
∫
β0(t) time

series. In a toy model, we observed that the different dynamic profiles for
∫
β0(t) could be

recreated by modifying the temporal patterns and amplitudes of the activations. This suggests
that different clusters may represent different functional roles or coding capacities of the assem-
blies. We found that some of the

∫
β0(t) activation profiles displayed longer durations and a

larger proportion of active neurons during spontaneous activations. Interestingly, these profiles
were also associated with the activation of cholinergic neurons within the assemblies (Figure
8). Previous studies have shown that attention is associated with the activation of the cholin-
ergic system [58, 59]. Our results suggest a mechanism by which attention may influence visual
detection via the modulation of the topological structure of sensory circuits.
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Methods

Experimental methods – calcium imaging

All experiments were performed using transgenic zebrafish larvae from 6 to 7 days post-fertilization
(dpf). The embryos were collected and raised at 28◦C in 0.5x E3 embryo medium (E3 in mM: 5
NaCl, 0.17 KCl, 0.33 CaCl2, 0.33 MgCl2, pH 7.2). Larvae were kept under a 14/10 h light-dark
cycle and fed after 5 dpf with paramecia. Zebrafish sex cannot be determined until 3 weeks
dpf. Thus, the sex of the animals is unknown. All experimental procedures were approved by
the Comité d’éthique en expérimentation animale n◦ 005. Reference number APAFIS#27495-
2020100614519712 v14.2.2.

Transgenic lines. We used double transgenic (HuC:H2B-GCaMP6f and Vglut2a:loxP-mCherry-
loxP-Gal4) zebrafish larvae in a nacre background (gift from the National BioResource Project,
Zebrafish, Core Institution).

Selective-plane illumination microscopy for calcium imaging. We recorded the sponta-
neous activity of the zebrafish optic tectum using selective-plane illumination (SPIM) microscopy
with near single-cell resolution [60, 61]. The calcium indicator (H2B-GCaMP6f) was excited by
a micrometer-thick light sheet emitted from the left side of the larva which produced optical
sectioning.

We used a constant wave 488 nm laser (Omicron PHoXX® 480-200) as the single-photon
light source of the SPIM. The laser beam was coupled to an optical single-mode fiber and
the output was collimated using a fiber optic. The 1.6mm beam from the coupled laser was
expanded to a 4.5mm beam through a telescope formed by two lenses (f1 AC254-050-A-ML
and f2 AC254-150-A-ML, Thorlabs). The telescope created a collimated beam with uniform
intensity.

The laser beam was projected onto a pair of galvanometric mirrors at an angular range of
26◦ (Model 6215H with a mirror size of 5mm). A system composed of a scan lens (AC508-080-
AB-ML, Thorlabs) and a tube lens (Olympus U-TLU IR) imaged the beam to a decentered spot
at the back focal aperture of the imaging objective.

The scan lens (fscan 50.8mm) was placed in front of the scanning mirror and converted the
angular deflection θ into a horizontal line displacement of the incident light. The beam was
collimated by an infinity corrected tube lens (ftube) and steered onto the back focal plane of the
objective lens.

The generated fluorescence of the sample was collected by a Hamamatsu ORCA-Flash4.0
V2® camera whose optical axis was orthogonal to the excitation plane. We used the µManager
software to control the Orca-Flash4.0 camera.

Recording. We recorded at 15Hz the spontaneous brain activity of the optic tectum for one
hour in zebrafish larvae aged between 6 to 7 dpf. The zebrafish larvae were embedded in 2%
low-melting point agarose (Invitrogen) in E3 embryo medium [62] (in mM): 5 NaCl, 0.17 KCl,
0.33 CaCl2, 0.33 MgCl2 (pH 7.2). The larvae were placed inside a rectangular chamber filled
with E3 embryo medium. This chamber was placed on an elevated stage. We recorded a volume
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of 16 µm of the optic tectum starting, on average, 52.8 µm (±15.26 µm SD) below its surface.
The volume consisted of 3 layers separated by 8 µm. Larvae were left to rest and adapt to the
recording environment for at least 30min before starting the experiments.

Registration of recorded images. We used a template based alignment [63] to register the
raw images. While most of the images were aligned to the template, some images (in particular
those recorded during movements and display movement artifacts) had a low correlation with
the template. For that reason, we z-scored all of the correlation values obtained in the previous
step. Then we looked at the distribution and set a threshold. All images whose correlation
values were below that threshold were removed. Finally, we inspected the remaining images to
identify and remove other images that could be attributed to artifacts.

Experimental methods – neurotransmitter identity

The optic tectum contains neurons of three different types of neurotransmitter identity: cholin-
ergic, GABAergic, and glutamatergic [53, 40]. The glutamatergic neurons were identified in
vivo, while the cholinergic and GABAergic neurons were identified via immunostaining.

Detection of Vglut2a neurons. We identified Vglut2a neurons based on the expression of
the red fluorescence protein mCherry. Using the SPIM, we imaged a volume of the optic tectum
of 48 µm depth which comprised 13 layers that were separated by 4 µm.

We matched the GCaMP6f images with the mCherry images to select the proper layers. Then
we split the mCherry images into different regions to take into account differences between
intensities. We calculated the mean and standard deviation of each region and then fixed a
threshold to detect the brighter areas. Then, we calculated the mean intensity of the detected
neurons inside each area. Finally, those neurons whose mean intensity was equal or higher than
the threshold of their area were labeled as glutamatergic neurons. The threshold was the mean
plus 1/2 of the standard deviation of the detected neurons for each region. Later, we used the
immunostaining results to double check that the detected neurons were glutamatergic.

Immunostaining. Ten double transgenic (HuC:H2B-GCaMP6f and Vglut2a:loxP-mCherry-
loxP-Gal4) zebrafish larvae were anesthetized and fixed in a solution of PBS+4% PFA at a
pH of 7.4. Next, the fixed larvae underwent a series of washes in PBS+0.5% Triton X-100 to
remove the fixative. A blocking solution containing PBS+0.5% Triton X-100, 1% DMSO, and
2% BSA was applied to saturate nonspecific binding sites. The samples were then incubated
with primary antibodies diluted at 1/100 against specific markers of interest, such as Rabbit
Anti-Gad1b, Goat Anti-ChAT, and Mouse Anti-mCherry. After that, the samples were washed
again and subjected to a secondary antibody staining step using Donkey Anti-rabbit 647, Donkey
Anti-goat 568, and Donkey Anti-mouse 488 antibodies diluted at 1/500. After further washes,
the samples were treated overnight with 500 µL of PBS, 1% Triton, 1% DMSO, 0.1% Tween,
and DAPI (10 µg/µL) for nuclear staining. Finally, the samples were fixed once more with
PBS+4% PFA, washed, and stored in PBS-0.5% solution at 4◦C until confocal imaging.

The samples were immobilized in 2% UltraPure™ Low Melting Point Agarose (16520100,
Invitrogen™) on a glass-bottom µ-Dish 35 mm (high Glass Bottom) (81158, ibidi). Imaging was
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conducted using an inverted Confocal Laser Scanning Microscope TCS SP8 (Leica, Germany),
equipped with a CS2 Plan Apochromat 40x/1.10NA water immersion objective lens and utilizing
hybrid PMTs. To minimize any potential crosstalk between channels, images were acquired in
frame sequential mode. All images were captured using a White Light Laser (WLL) with
excitation wavelengths of 488 nm, 568 nm, and 647 nm to excite Alexa Fluor Plus 488, Alexa
Fluor 568, Alexa Fluor Plus 647, respectively, as well as a 405 nm diode for DAPI excitation.

The pinhole was set at 1.0 Airy unit. Imaging was performed with a 2 µm Z-step interval
at a resolution of 1024 × 1024 pixels. The zoom factor was 0.75. The immunostaining images
were analyzed using the image processing package Fiji [64]. We aligned the images using the
Fiji plugin BigWarp [65]. Neurons that were not identified as ChAT or Vglut2a positive were
considered as GABAergic.

Data analysis methods – preprocessing

Segmentation. To segment single neurons, we used the algorithm introduced in [66] using
the default parameters except for the value of the initial radius, which we set to 2 um instead of
3.1 um. Briefly, we used the template for registration to detect GCaMP-positive areas. These
areas were coarse-extracted by binary thresholding based on absolute pixel intensity and local
image contrast. Then, local intensity normalization was performed on each pixel by calculating
a relative rank of pixel intensity. The normalized image was smoothed by an averaging kernel
and a pixel with a maximum value within a surrounding image patch was identified as a centroid
of a neuron. This local smoothing and maxima was repeated twice to maximize the number of
neurons correctly recognized. After detecting neurons, we imported the neurons to the Toolbox
described in [41, 42] where time series of pixel intensity were averaged from pixels within each
individual neuron. This gives the fluorescence time series of each neuron.

Calculation of ∆F/F. To calculate the ∆F/F for each fluorescence time series, we first
calculated the baseline neural fluorescence by computing a running average of 2700 time points
(∼ 180 seconds) for the 8th percentile of the data [67]. We then calculated the change in
fluorescence relative to baseline fluorescence, ∆F, divided by baseline fluorescence, F, to get
∆F/F. Due to the preprocessing of the fluorescence traces, the estimated baseline fluorescence
can be very small or negative in rare cases. To prevent spurious ∆F/F estimates, we set the
baseline as the maximum of the median filter estimated baseline and the standard deviation of
the estimated noise of the fluorescence.

Detection of calcium transients and deconvolved calcium signal. We applied the algo-
rithm described in [68] to the ∆F/F to detect the calcium transients (events). Neurons without
calcium transients were removed from the analyses. In addition to the calcium transients, the
algorithm calculates the estimated calcium concentration (deconvolved calcium) using the ∆F/F
signal. The deconvolved calcium signal is a denoised and smoother version of ∆F/F; we used it
to compute neuronal correlations for topological analyses.

Assembly detection. We detect neuronal assemblies by following the PCA-PROMAX ap-
proach described in [28, 42, 29]. First, we reduced the dimensionality of the neuronal ∆F/F
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dynamics by using principal component analysis (PCA) and then only keeping the princi-
pal components with a statistically significant eigenvalue. We then softened the PCA or-
thogonality condition by rotating the principal components using PROMAX. Finally, we set
a data-driven threshold on the PCA-PROMAX loadings to establish the neuronal composi-
tions of the assemblies. We used the Computational Toolbox introduced in [28, 41, 42]. (See
https://github.com/zebrain-lab/Toolbox-Romano-et-al.)

Compact assemblies. To distinguish between sparse and compact assemblies, for each as-
sembly we computed the distribution P of pairwise Euclidean distances between the neurons. We

then computed the mean and Shannon entropy, H(P ) = −
∑

bins i

P (i) logP (i), of each (binned)

distance distribution, obtaining a pair of values (entropy, mean distance) for each assembly.
Next, we examined the joint distribution of these values across all identified assemblies (see
Supp Figure 1e). This distribution was bimodal, corresponding to distinct collections of compact
(purple) and sparse (green) neuronal assemblies. We found by visual inspection that assemblies
with an entropy value lower than 1.5 were spatially concentrated (compact assemblies). The
compact assemblies had distance distributions with both lower entropy and lower mean distance
compared to the other (sparse) assemblies.

Detection of assembly activations. We detected spontaneous activations of assemblies
using criteria combining the percentage of active neurons in the assembly with the matching
index (MI), a measure of how much of the total population activity is coming from a given
assembly.

For an assembly i and time point t, the MI quantifies the overlap between the binary activity
pattern of the assembly, Pati(t), and that of the entire recorded population, Patpop(t), where
Pati(t) and Patpop(t) are index sets of active neurons, and |Pati(t)| denotes the size of the set.
Specifically, the MI is defined as

MI(t) = 2
|Pati(t) ∩ Patpop(t)|
|Pati(t)|+ |Patpop(t)|

=
2 |Pati(t)|

|Pati(t)|+ |Patpop(t)|
, (1)

where the second equality follows because Pati(t) ⊆ Patpop(t). Note that MI(t) always lies in
[0, 1], with 0 indicating no overlap and 1 indicating complete overlap (Pati(t) = Patpop(t)); we
can thus refer to the value as a percentage.

We defined the activation onset of an assembly as the time when the percentage of active
neurons in the assembly reaches at least 15% and the value of the MI is at least 10% [28].
The activation offset was defined as the time at which the percentage of active neurons in the
assembly decreases below 12.5% or the MI value drops below 10%. A neuron is deemed active
for 3 seconds after the detected calcium events. We do not consider activations in our analysis
that have time frames with movement artifacts.

For each assembly, the ‘on’ and ‘off’ periods are defined as the time periods during or between
activations, respectively (see Figure 5a).

Assembly and activation selection. 10 of the 12 larvae were successfully immunostained, so
that we were able to distinguish all three cell types: glutamatergic, GABAergic, and cholinergic.
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For the analyses in Figures 1-2, we used the 10 successfully immunostained larvae and focused
on assemblies with at least 10 neurons (458 of the 517 assemblies, see Supp. Figure 1b).

For the analyses in Figures 4-8, we used all 12 larvae, including the two where immunostaining
was unsuccessful. In Figures 4-5, we restricted our analyses to assemblies with at least 20 neurons
(N = 450 assemblies across the 12 larvae), as Betti curves with just a few neurons are difficult
to compare to those from larger assemblies (see Supp. Figure 4).

In Figures 6-8, we considered all spontaneous activations, including those from assemblies
with fewer than 20 neurons (N = 5046 activations across 450 compact assemblies for 12 larvae).

Data analysis methods – E-I balance, entropy, correlations

E-I analysis. We analyzed the excitatory-inhibitory (E-I) ratio, using the formula E/(I+E),
from three seconds prior the onset of activations to ten seconds after the onset using the ∆F/F
signal. We divided the time period in non-overlapping windows of one second each. We assessed
whether the difference between the medians of the windows was statistically significant by using
Kruskal-Wallis test (a non-parametric version of ANOVA that does not assume normality). To
identify which windows differed significantly from each other, we used the Dunn test post-hoc
(Holm correction) in Figure 2d.

Entropies of assemblies during activations. For a single activation from a given assembly,
we computed entropy time series as follows. First, we used a causal sliding window of 0.5 s, with
slide step of one time bin (≈ 67ms), and summed the activity of each neuron to compute a
population vector for each time window. Normalizing by the total population activity, this
yields a distribution p = (p1, . . . , pn) for each time window describing the fraction of total
activity coming from each neuron. For each such distribution, we computed the Shannon entropy
H(p) = −

∑
i pi log(pi), which satisfies

0 ≤ H(p) ≤ log(n).

Because neuronal assemblies are composed of different numbers of neurons, we normalized the
entropy by the maximum value, log(n), to obtain:

Ĥ(p) =
H(p)

log(n)
,

with 0 ≤ Ĥ(p) ≤ 1. Collecting the entropies across time windows, we obtain an entropy time
series for each activation that can be averaged across activations (Figure 2e). We similarly
computed entropies for subpopulations corresponding to distinct neuron types (glutamatergic,
GABAergic, cholinergic). We did not include the cholinergic populations when the assembly
had only one cholinergic neuron. In addition, we did not take into account the entropy of the
cholinergic population after 4 s of the activation onset because of the reduced number of samples.
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Correlations. In Figure 1c we used Pearson correlation. For the topological analyses, we
computed the pairwise correlation between neurons i and j as

Cij =

nbins∑

k=1

ci(tk)cj(tk),

where ci(t) is the deconvolved calcium signal of neuron i at time t. We did not mean-shift ci(t),
as is done in Pearson correlation, because the neural activity is sparse and mean shifting would
result in co-silent neurons having high correlation. Since ci(t) decays slowly, we also did not
require further smoothing of the signal. In particular, integrating cross-correlograms over a 1
second window of delays as in [36] did not yield a noticeable difference in the results of our
topological analyses. All correlations were computed after removing time bins with movement
artifacts.

Assembly correlations for ‘on’ and ‘off’ periods, as in Figure 5, were computed by restricting
the above Cij computations to time bins during (‘on’) or between (‘off’) activations. Since there
are far fewer ‘on’ than ‘off’ time bins for any given assembly, the ‘off’ correlations were computed
by randomly subsampling the time bins between activations so that their total matched the
number of ‘on’ time bins.

Randomized assemblies. For each compact assembly of size k, as a control we considered
randomized assemblies that were constructed by taking a random sample of k neurons from the
full population of neurons (we only sampled from neurons that were active during the hour-long
recording). We also considered random samples of neurons that contained the same numbers
of glutamatergic and non-glutamatergic neurons as the compact assemblies, and observed that
this did not significantly change the resulting analyses.

Correlation shuffles. As another control, for each compact assembly we randomly shuffled
the matrix of correlations (entrywise) in the upper triangle, [Cij ]i<j , to obtain a symmetric shuf-
fled correlation matrix with the same distribution of correlation values as the original assembly.
In particular, any analysis of correlations that depends only on the distribution of values would
produce identical outputs for the original and shuffled correlation matrices (see Figure 3d).

Low-rank and high-rank/dimension matrix models. We generated random n×n corre-
lation matrices A of rank or underlying dimension d by selecting n points {pi}ni=1 uniformly at
random from either [−1, 1]d (‘mixed’ model) or [0, 1]d (‘positive’ model) and setting Aij = ⟨pi, pj⟩
where ⟨v, w⟩ =

∑d
ℓ=1 vℓwℓ is the standard inner product on Rd. Note that the ‘mixed’ model

is the standard procedure for generating random matrices of a fixed rank, while the ‘positive’
model more closely aligns with correlation matrices arising from calcium imaging data, as the
signal has nonnegative values. In Figure 5c-d we considered low ranks d = 1, ..., 5; medium ranks
d = 20 − 90 that match the distribution of assembly sizes; and high underlying dimensions of
d = 500 and d = 54, 000, where 500 is roughly the number of time bins of an assembly activation
and 54, 000 is the number of time bins in the full recording. Note that while the maximum rank
of an n × n matrix is n, the Betti curves distinguish models whose underlying dimensions are
considerably higher [36].
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Software. We carried out all analyses in this research by using a combination of MATLAB
and Python scripts. We used some scripts of the Calcium Toolbox (described in [41, 42]) for the
processing of the fluorescence data. The segmentation of the neurons was done with the method
introduced in [66].

Topological data analysis methods

TDA software. We computed Betti curves βi(ρ) for symmetric correlation matrices following
the clique topology pipeline in [36, 34] using our Python package, PyCliqueTop 2023, which is
freely available at: https://github.com/nerdnik/PyCliqueTop_2023. This code is an updated
Python version of the MATLAB package CliqueTop, first introduced in [36] and used in [69, 70].
Whereas CliqueTop uses Perseus to compute persistent homology, PyCliqueTop 2023 uses the
Python package Ripser for faster, more memory-efficient computations.

Averaging of Betti curves. The Betti curves βi(ρ) coming out of the software are discretized
vectors that partition the [0, 1] interval of possible edge densities in different ways. If n is the
number of neurons in an assembly, then

(
n
2

)
determines the discrete set of edge densities for each

step of the filtration. To compute average Betti curves across assemblies with different numbers
of neurons, we linearly interpolated the discretized vectors to get Betti curve values for evenly
spaced edge densities 0 to 1 with step size 0.001.

Integrated Betti values. To obtain a single summary statistic from each Betti curve, βj(ρ),
we used the integrated Betti value:

∫
βj =

1

# edges+1

# edges∑

k=0

βj(ρk).

These values were also used in [36, 69, 70] to simplify the statistics when comparing Betti curves
to null models.

To fairly compare β0 curves and
∫
β0 values across assemblies of different sizes, we first

normalized the β0 curve by dividing by the size of the assembly (# neurons), and then subtracted
1

# neurons from the integrated β0 curve. We thus obtained:

∫
β0 =

1

(# edges+1)(# neurons)

# edges∑

k=0

βj(ρk)−
1

(# neurons)
.

Integrated Betti time series clusters. This is a novel TDA analysis that has not been
described elsewhere. For each activation, we computed correlations in a 0.5 second causal
sliding window starting 2 seconds prior to activation onset through 2 seconds after, with a slide
step of 1 time bin (≈ 67 msec). The time windows are indexed by the final time bin, ti. As we
recorded at 15 Hz, this results in 61 temporally ordered assembly correlation matrices, Cij(ti),
per activation (see Figure 6a). We checked the effects of the sliding window size on the results
of our analysis, considering window sizes of 1 time bin, 4 time bins (≈ 0.25 s), 8 time bins, 15
time bins (1 s), and 30 time bins (see Supp. Figure 9).
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The correlation matrices Cij(t) for a given activation were run through the clique topology
pipeline, and we restricted attention to the two summary values

∫
β0 and

∫
β1 for each matrix.

Pooling together these values across t results in two time series per activation,
∫
β0(t) and∫

β1(t).
We then clustered the activations via their

∫
β0(t) time series using k-means clustering,

viewing each time series as a vector (Figure 7a). Before clustering, we first restricted each∫
β0(t) to a small window starting 5 time bins (≈ 0.33 s) before activation onset to 10 time

bins (≈ 0.67 s) after activation onset. We then subtracted the mean and clustered the resulting
vectors using k-means clustering. To determine the number of clusters, we ran a silhouette
analysis (see Supp. Figure 10). We also checked the effects of the choice of restriction window
on the k-means clusters (see Supp. Figure 11). Additionally, we performed PCA on the restricted∫
β0(t) time series (Figure 7b). However, we did not mean-center as we did for the k-means

clustering. We observed that the first principal component corresponded to the mean of
∫
β0(t),

confirming the importance of mean-centering
∫
β0(t) prior to k-means clustering.

Synthetic models for integrated Betti time series analysis. We compared the integrated
Betti time series for assembly activations to those of synthetic activation dynamics generated
by a family of simple spiking models with varying degrees of synchronicity and amplitude. We
generated synthetic calcium signals from a set of N = 30 spike trains where we varied the
synchrony and amplitude of the spikes. We set a sampling frequency of 15 Hz and convolved
each spike train with a causal decaying exponential with timescale τ = 0.75 seconds over a
convolution window of T = 10τ seconds. We considered 5 models: model k has spike trains
where neuron i spikes at time bin 100 + λki with amplitude 1 + γki. The model 1 parameters
were (λ1, γ1) = (20, 0); model 2 had (λ2, γ2) = (0, 0); model 3 had (λ3, γ3) = (5, 0); model 4
had (λ4, γ4) = (0, 1); and model 5 had (λ5, γ5) = (1, 0) (see Figure 7c). For each of these model
activations, we computed the

∫
β0(t) time series as described above.

Cholinergic activity by cluster. To compute the fraction of activations with cholinergic
activity in ‘pre’ or ‘post’ activation periods (see Figure 8c), we computed the number of ac-
tivations within each cluster that had at least one cholinergic assembly neuron active within
two seconds prior to onset (‘pre’), and during activation (‘post’), and then divided each number
by the number of cluster activations coming from assemblies that have at least one cholinergic
neuron.
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Figure legends

Figure 1. Characterization of neurotransmitter identity of neuronal assemblies in
the optic tectum. (a) Left: Scheme of the brain of a 6 dfp zebrafish larva. The orange
rectangle encloses the optic tectum. Middle: An optical section of the optic tectum follow-
ing immunochemistry (cb: cerebellum; np: neuropil; pvz: periventricular layer; ra: retinotopic
axis). Note the three types of neurons: glutamatergic (red), GABAergic (green), and cholinergic
(blue). Yellow arrows point to eight cholinergic neurons. Note their arrangement along the tec-
tum’s retinotopic axis. Right: 3D representation of the tectal neurons. Color: neurotransmitter
identity of neurons within one neuronal assembly. Scalebar: 50 µm. (b) The numbers of gluta-
matergic and GABAergic neurons within each of the recorded assemblies. Each dot represents
one assembly (n = 458 assemblies from 10 larvae). The colors of the dots indicate the num-
ber of cholinergic neurons within an assembly. The black diagonal line denotes an equal ratio
between glutamatergic and GABAergic populations, while the yellow line shows the expected
balance based on the proportion of glutamatergic neurons in the optic tectum (55.47%± 2.40%,
shaded yellow area indicates ± SEM). Note that the assemblies are more glutamatergic, with the
purple line indicating the average GABA-glut ratio within assemblies. Cholinergic neurons are
scattered across assemblies. Inset: Distributions of the proportions of each population inside
the assemblies (glutamatergic: 65.88% ± 13.49%; GABAergic: 32.62% ± 13.13%; cholinergic:
1.93%± 2.79%). (c) Distributions of Pearson’s pairwise correlations between neurons according
to their neurotransmitter identity. The mean of the correlations of glutamatergic: 0.28 ± 0.26,
GABAergic: 0.27 ± 0.25, cholinergic: 0.27 ± 0.27. The mean correlations between cell types
were GABAergic vs. glutamatergic: 0.27 ± 0.27, cholinergic vs. GABAergic: 0.24 ± 0.19, and
cholinergic vs. glutamatergic 0.19± 0.24. The mean of the entire tectal population correlations:
0.10±0.09 (not shown). (d) Left: optical section of the optic tectum showing a projection of all
cholinergic neurons (N = 41). Color line: tectal retinotopic axis. Note the cholinergic neurons
arranged along the retinotopic axis. Right: the distribution of the cholinergic neurons along the
normalized tectal axis from all larvae (N = 278 from 10 larvae).

Figure 2. Dynamics of different cell types during spontaneous activation of tectal
assemblies. (a) Three examples of assembly activations (3 s prior to onset to 7 s after onset),
with onsets aligned to time 0. Top: rasters of ∆F/F of the three assemblies (grayscale). Neurons
of each assembly are arranged according to their neurotransmitter identity (red: glutamatergic;
green: GABAergic; blue: cholinergic). Middle: the number of active neurons in the assembly
of each neuronal population. Bottom: average ∆F/F activity of each neuronal population. (b)
Average number of active neurons (3785 activations of 438 assemblies from 10 larvae). (c)
Averages of the mean ∆F/F activity across activations for each neuronal cell-type population.
Note that the number of active glutamatergic neurons during an activation is higher than that of
GABAergic neurons. However, the average activity of the glutamatergic and GABAergic neurons
during the time interval under consideration is similar. Although the number of cholinergic
neurons is very small, their Ca2+ transients are high. (d) The average E-I ratio during the
spontaneous activation of the tectal assemblies. Between two and one seconds prior the onset
of activations (green line), the value of E-I ratio (0.67± 0.06) was lower compared to the value
between five to nine seconds after the onset (0.69 ± 0.06). This difference was statistically
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significant (P < 0.001, Kruskal-Wallis followed by Dunn’s test). (e) The average entropy of
all assembly neurons (black) and the different neuronal cell-type populations (colored curves)
during the spontaneous activations of tectal assemblies. Note that the glutamatergic population
showed the sharpest increase in entropy prior to the onset of the spontaneous activation of the
assemblies, and the highest amplitude. The entropy for the cholinergic neurons was calculated
up to 4 s due to the lack of data points. Shaded regions in all panels represent Standard Error
Mean.

Figure 3. Topological analysis of correlation matrices. We follow the pipeline for comput-
ing Betti curves from pairwise correlation matrices given in [36, 34]. (a) An example correlation
matrix displaying the pairwise correlations of 6 neurons. The white numbers indicate the ranked
pairwise correlations from highest to lowest. (b) The filtration of simplicial complexes corre-
sponding to the correlations in (a). Each node corresponds to a neuron, and edges are added
in a sequence according to their rank, so that pairs of nodes for highly correlated neurons are
connected first. One new edge is added at each step of the filtration (shown in pink). Cliques
(all-to-all connected subgraphs) are “filled in” to form a simplicial complex from the graph called
a clique complex. 2-cliques give rise to edges, 3-cliques are filled in with triangles, 4-cliques with
tetrahedra, and so on. These are also shown in pink when they first emerge. A homology 1-cycle
can be represented by a cycle in the graph that is not filled in; higher-dimensional cycles are sim-
ilarly defined (see [34] for details). In this filtration, a homology 1-cycle emerges at step 6 (edge
density ρ = 6/15) and disappears at step 10 (ρ = 10/15). A homology 2-cycle, corresponding
to the 2-dimensional boundary of a void, appears at step 12 and disappears at step 13. Betti
numbers (β0, β1, β2) count the number of (non-equivalent) homology cycles in each dimension,
with β0 corresponding to the number of connected components. (c) The Betti curves βi(ρ) of
the correlation matrix track the Betti numbers at each step in the filtration, parametrized by
edge density ρ. Notice that β0 monotonically decreases, as adding edges can never increase the
number of connected components. (d) (First column) Pairwise correlation for an assembly of
neurons, the associated Betti curves, the histogram of correlation values, and the spectrum of
singular values. (Second column) Reordering the neurons does not affect the Betti curves nor the
distributions. (Third column) Passing the entries of the correlation matrix through a nonlinear,
but monotonic, transformation strongly alters the histogram of matrix values and qualitatively
changes the singular value spectrum. The Betti curves, however, remain intact. (Fourth column)
Shuffling the entries of the correlation matrix leaves the histogram of correlation values intact
and produces a milder change in the singular values. However, the Betti curves are completely
different and resemble those of a random i.i.d. symmetric matrix.

Figure 4. Betti curves capture the special correlation structure of tectal assemblies.
(a) Average β0 curves for pairwise correlations between the neurons within the tectal assemblies
(black), randomized assemblies (yellow) and entrywise shuffles of assembly correlations (green).
Note that shuffling the correlations results in a fast decaying β0 (N = 450 for 12 larvae). (b) Left:
Average β1 curves (blue) and β2 curves (red) for assembly correlations indicate few homology 1-
and 2-cycles; average β̄0 curves are normalized (black). Middle: Betti curves for random assem-
bly correlations display more homology 1- and 2-cycles. Right: entrywise shuffles of assembly
correlations have large average β1 and β2 curves. Notice the increase in the scale of the y-axis.
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(c) Left: The integrated Betti values
∫
β̄0 and

∫
β1 from (a) and (b). Assemblies (black) and

randomized assemblies (yellow) have much lower
∫
β1, but higher

∫
β̄0, than correlation shuffles

(green). Inset: histograms of the distributions of
∫
β1 (top) and

∫
β̄0 (bottom). Right: zoom of

the grey rectangle on the left.
∫
β1 can be used to differentiate the assemblies (black) from the

randomized assemblies (yellow). (d) Betti curves for individual assemblies annotated in (c, red
arrows). Note that

∫
β̄0 increases from assembly 1 to 4, capturing the slower decay of β0.

Figure 5. Tectal assemblies display topological features associated with low-rank
models. (a) An example rasterplot for the neurons within an assembly around a spontaneous
activation. The ‘on’ period lies between the activation onset and offset (red lines), the rest is
the ‘off’ period. (b) Average β̄0, β1, and β2 curves for assembly correlations during ‘on’ and ‘off’
periods (N = 435 for 12 larvae). Note that β1 and β2 are negligible during the on periods. (c)
Average Betti curves for 100 symmetric matrices of size 50 from two families of low rank models:
‘mixed’ and ‘positive’ low rank matrices (see Methods). β0 curves for ranks 1-5 (pastel colors)
decay more quickly for higher ranks. Note that β1 (blue) and β2 (red) curves are unimodal for
the ‘mixed’ models, but vanish for the ‘positive’ models. (d) Boxplots of the distributions of∫
β̄0,

∫
β1, and

∫
β2 for the experimental data, low-rank ‘mixed’ models, and ‘positive’ models

of different ranks/dimensions (N=450 matrices of size 50 for each model). (e) Wasserstein
distances between the

∫
β̄0,

∫
β1, and

∫
β2 distributions for the experimental data (rows) and

the models (columns). White asterisks indicate the closest models for each set of data-derived
correlation matrices (‘whole’, ‘on’, ‘off’, and ‘rand’). Note that the assembly correlations during
‘on’ periods best match

∫
β1 and

∫
β2 values obtained for the ‘mixed’ rank 1 and ‘positive’ low-

rank models. In contrast, the best matches for the ‘off’ and randomized assembly correlations
are the models with the highest ranks/dimensions.

Figure 6. Topological dynamics of assemblies around spontaneous activations (a)
Integrated Betti time series were computed from a sliding window correlation analysis. From
each 0.5 s window we computed a correlation matrix Cij(t), where t is the end time of the window,
and then from each Cij(t) we computed integrated Betti values

∫
β̄0(t) and

∫
β1(t), yielding

integrated Betti time series. Activation onset is shown at time 0 (vertical green line). (b) (Top)
The average

∫
β̄0(t) and

∫
β1(t) time series across assembly activations (N = 5046 for 12 larvae);

standard errors shown in gray. While
∫
β̄0(t) displays a sharp increase at activation onset,

∫
β1(t)

shows a marked decrease to near zero. (Top right) The standard deviations (grey) of
∫
β̄0(t)

and
∫
β1(t) are shown together with the average curves (black). Note that

∫
β1(t) goes from

very high to very low variability following activation onset. (Bottom) Four examples displaying
different dynamic profiles of

∫
β̄0(t) time series (black) around spontaneous activations. Yellow

horizontal lines denote the expected value of the
∫
β̄0(t) time series for random symmetric i.i.d.

matrices of the same size as the activated assembly. (c) (Top) Amplification of correlations
Cij over time via a multiplicative gain function α(t) = 1 − eβt (red curve) yields integrated
Betti time series

∫
β̄0(t),

∫
β1(t), that are completely flat. (Bottom) Correlation matrices and

distributions of correlation values at different time points (t1, t2, tk). Note that the amplification
does not reorganize the structure of the correlation matrices, and thus the Betti curves remain
unchanged.
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Figure 7. Clustering assembly activations by their
∫
β̄0(t) time series. (a)

∫
β̄0(t)

dynamic profiles (colors) for each cluster, together with their respective averages (black) (total
N=5046 for 12 larvae). (b) (Top) PC2-PC3 projection of

∫
β̄0(t) for all assembly activations

(dots colored according to the clusters in (a)). (Bottom) Vector representations of PC1, PC2,
and PC3. (c) (Top) A two-parameter family of toy models that vary in synchrony and amplitude
of neuronal spiking. For each of five models, synthetic activity of 30 neurons and their average
(black) is shown. (Bottom) The resulting

∫
β̄0(t) for each model (black). Yellow lines show the

expected
∫
β̄0(t) for a random symmetric i.i.d. matrix of size 30. Notice that a simple increase

in the average activity of the population does not correspond to an increase in
∫
β̄0(t); instead,

a change in β0 reflects a change in the organization of correlations.

Figure 8. Cholinergic activity modulates assembly correlations resulting in longer
activations with higher neuronal participation. (a) Average and standard deviation
of assembly size, activation length, and participation ratio (fraction of active neurons of the
assembly) in each of the assembly activation clusters from Figure 7a. (b) Average assembly
participation and E-I activity ratio within the 2 seconds preceding (‘pre’) and following (‘post’)
the onset of spontaneous activations. Note that clusters 4, 5, and 6 have a larger proportion of
active assembly neurons after the activation onsets, yet the E-I balance is maintained from ‘pre’
to ‘post’ periods across all clusters. (c) (Left) Fraction of assembly activations containing active
cholinergic neurons in the ‘pre’ and ‘post’ periods, for each cluster. Clusters 4, 5, and 6 show
an increase in cholinergic engagement during the ‘post’ period. (Middle and Right) “∆ chol
activity” denotes the change in the fraction of assembly activations containing active cholinergic
neurons from assemblies that have at least one cholinergic neuron. While the change does not
appear to correlate with average assembly sizes for the clusters, clusters with higher ∆ chol
activity have longer activation lengths and higher assembly participation. (d) The conceptual
picture that emerges is of assemblies lying on low-dimensional subspaces, with each assembly
exhibiting a variety of activation types belonging to distinct clusters, potentially modulated by
cholinergic activity.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


μ

pvz

Gad1b
ChAT 

Vglut2a

cb

np

30000

0

#
 p

a
ir

s

7500

0

#
 p

a
ir

s

20

0#
 p

a
ir

s

7500

0

30

0

30

0
0 1

Pearson corr
0 1

Pearson corr
0 1

Pearson corr

0 1

0 1 0 1

60

40

30

20

10

0
0 10 20 30 40 50 60

% cell type
0

0

0.05

0.10

0.15

10050

D
en

si
ty

50 μm 

50 μm 

tectal GABA-glut ratio
assembly GABA-glut ratio

0 chol
1 chol
≥ 2 chol50

ra

Figure 1: Figure 1 – see legend

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


# 
ac

tiv
e 

ne
ur

on
s

0

20

40

0

20

40
a

b c

d

# 
ac

tiv
e 

ne
ur

on
s

0

10

20
30

10

0

10

20

0

1

0

1

2

glut
GABA
chol

0

10

20

-2 4 6

0
1
2

6
5
4
3
2
1
0

4 6 8

0.1

0.3

0.5

0.7

0.9

0.6

0.7

0.8
0.5

0
0.1

0.2

0.3

0.4

4 6 8

*

-2

0 2-2 4 60 2 -2 4 60 2
time (s)

-2 4 60 2

time (s)

time (s)

time (s)

time (s)

-2 4 60 2 -2 4 60 2

0
-2 4 60 2 -2 4 60 2-2 4 60 2

1.0

0.5

0.0

2.0

1.0

0.0

1.5
1.0
0.5
0.0

# active neurons 

e

en
tro

py

4 6 8

20-2

20-2

20-2

4 6 820-2

20

E-I ratio

E-
I r

at
io

entropy 

time (s) time (s)

as
se

m
bl

y
ne

ur
on

s

glut
GABA
chol

Figure 2: Figure 2 - see legend

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


a correlation matrix

c

b filtration

 ρ = 14/15  ρ = 15/15 ρ = 13/15 ρ = 12/15 = 0.8 ρ = 11/15

 (β
0
, β

1
, β

2
) = (1, 0, 0)  (β

0
, β

1
, β

2
) = (1, 0, 0) (β

0
, β

1
, β

2
) = (1, 0, 0) (β

0
, β

1
, β

2
) = (1, 0, 1) (β

0
, β

1
, β

2
) = (1, 0, 0)

 ρ = 7/15 ρ = 6/15 = 0.4  ρ = 8/15  ρ = 9/15  ρ = 10/15 = 0.67

 (β
0
, β

1
, β

2
) = (1, 1, 0) (β

0
, β

1
, β

2
) = (2, 1, 0)  (β

0
, β

1
, β

2
) = (1, 1, 0)  (β

0
, β

1
, β

2
) = (1, 1, 0)  (β

0
, β

1
, β

2
) = (1, 0, 0)

 ρ = 1/15  ρ = 2/15  ρ = 3/15  ρ = 4/15  ρ = 5/15

 (β
0
, β

1
, β

2
) = (5, 0, 0)  (β

0
, β

1
, β

2
) = (4, 0, 0)  (β

0
, β

1
, β

2
) = (3, 0, 0)  (β

0
, β

1
, β

2
) = (2, 0, 0)  (β

0
, β

1
, β

2
) = (2, 0, 0)

. .

. .

..

1 2

34

5 6

. .

. .

..

1 2

34

5 6

. .

. .

..

1 2

34

5 6

. .

. .

..

1 2

34

5 6

. .

.

.

1 2

34

5 6.

.

.

.

..

1 2

34

5 6

.

. .

. .

.

1 2

34

5 6.

..

. .

.

1 2

34

5 6

.

.

.

.

.

1 2

34

5 6

.

.

.

5 .

..

.

1 2

34

6

..

5

1 2

34

6

.

.

..

.

.

.

1 2

34

5 6.

. .

.

.

5

.

.

.

.

..

1 2

34

6

.

. .

1 2

34

5 6

.

. .
5

.

. .

.

1 2

34

6

.

.5

Betti curves

 

# 
of

 c
yc

le
s

edge density (ρ)
0.0 0.2 0.4 0.6 0.8 1.0

0
1
2
3
4
5
6

0

1

2

3 41 2 5 6
high

low

neurons

1
2

5

3
4

6

ne
ur

on
s 1

2
3

4
5

6 7
8
9

10

11
12

13
14

15 co
rre

la
tio

n

d

# 
of

 c
yc

le
s 0

1

2

edge density

# 
of

 p
ai

rs

(log) corr

si
ng

ul
ar

 v
al

ue

singular value idx

assembly correlations

neurons

ne
ur

on
s

0

768

a.u.

edge density

(log) corr

singular value idx

nonlinear
transformation

0.0

1.0

a.u.

(log) corr

edge density

singular value idx

sorted neurons

0

768

a.u.

(log) corr

singular value idx

edge density

shuffled correlations

0

768

a.u.

Figure 3: Figure 3 - see legend

32

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

c

d

1

assembly 2 

0 0.2 0.4 0.6 0.8
0

20

40

60

edge density

= 0.09

= 0.018

∫
β0

β1

∫

assembly 3 

0.2 0.4 0.6 0.8 10

20

40

60

edge density

= 0.11

= 0.015

∫
β0

β1

∫

0 0.2 0.4 0.6 0.8 10

10

20

30

40 assembly 4 

edge density

= 0.12

= 0.46

∫
β0

β1

∫

1

assembly  1 

0.2 0.4 0.6 0.80

20

40

60

80
0

1

2

# 
of

 c
yc

le
s

edge density

= 0.07
= 0.024

∫
β0

β1

∫

0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.0
0.05 0.10 0.15 0.20

0

5

10

15

20

1

4

32

∫
β0

β1

∫

assembly
randomized assembly
corr shuffle

# 
as

se
m

bl
ie

s

400

100

# 
as

se
m

bl
ie

s

β1

∫

∫
β0

∫
β0

Betti 0 curves (N = 450)

edge density (ρ)

b randomized assemblies (N = 450)

edge density
10 0.2 0.4 0.6 0.8

0
0.2
0.4
0.6
0.8

1

corr shu�e (N = 450)

edge density
0

20

40

60

10 0.2 0.4 0.6 0.8

assemblies (N = 450) 

edge density

1

0
0.2
0.4
0.6
0.8

# 
of

 c
yc

le
s 

(a
vg

)

0 0.2 0.4 0.6 0.8 1

0
1
2

10.2 0.4 0.6 0.8

# 
of

 c
yc

le
s 

(a
vg

) assemblies
50

40

30

20

10

0

β0

β0
β0

0

randomized assemblies
corr shuffles

0 10 20∫
β1

150

0
0.20.10

60

0.20.1

0.6

0.7

∫
β1

# 
as

se
m

bl
ie

s

∫
β0

120

# 
as

se
m

bl
ie

s

400

200

0.3 0.7

0 0

Figure 4: Figure 4 - see legend

33

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


c   Betti curves of low rank models

0

0

0

0

0

rank 1
rank 2
rank 3
rank 4
rank 5

1

2

all ranks
all ranks

d   integrated Betti values

∫
β0

β1

∫

2

∫ data mixed positive

0.0

0.2
0.4

0.0

0.5
1.0

0.1
0.2

0

00 00 0 0

0

whole

rand

on off 1 2 3
rank

1 2 3 4 5
rank / dim

54,000

20-90
500 rank / dim

a  assembly activations

as
se

m
bl

y
ne

ur
on

s

onoff off
>0.5

0.0
a.u.

2 s time

1

on

0 0.2 0.4 0.6 0.8 10
0.2
0.4
0.6
0.8

1
0
1
2

edge density

# 
of

 c
yc

le
s 

(a
vg

)

0 0.2 0.4 0.6 0.8
edge density

0
0.2
0.4
0.6
0.8

1 o�

b  Betti curves on/off activation

e  Wasserstein distances

on
off

whole

rand

0.075

0
w.d.

1 2 3 31 2 4 5 20-90
500
54,000

*
**
*

w.d.
0

0.125

* *
**

* ****

w.d.

mixed positive
0.015

0.0*
** **** * *

on
off

whole

rand

on
off

whole

rand

∫
β0

β1

∫

2

∫

mixed

edge density

# 
of

 c
yc

le
s 

(a
vg

)

0 0.5 1

40

20

0

positive
40

20

0
0 0.5 1

edge density

Figure 5: Figure 5 - see legend

34

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2025. ; https://doi.org/10.1101/2025.10.26.684564doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.26.684564
http://creativecommons.org/licenses/by-nc-nd/4.0/


a  integrated Betti time series     

∫

∫
β1(t3)

β0(t3)

neurons

ne
ur

on
s

∫

∫
β1(t1)

β0(t1)

as
se

m
bl

y
ne

ur
on

s

t1 t3t2

0
0.5 s

1.0

0.5

0.0

a.u.

time
neurons

ne
ur

on
s

Cij(t1)

Cij(t3)

∫
β1(t)

∫
β0(t),

onset

b  

activation 1

time (s)time (s)

activation 4

time (s)
-2 0 1

0.3

0.15

0.0
-1 2 -2 0 1

0.3

0.15

0.0
-1 2

activation 3

-2 0 1

0.3

0.15

0.0
-1 2

time (s)
-2 0 1

0.3

0.15

0.0
-1 2

activation 2

∫
β0

time (s)
-2 -1 0 1 2

0.15

0.12

0.9

∫
β0

time (s)
-2 -1 0 1 2

0.25

0.15

0.05

β1

∫

-2 0 2

1.5

0.0
-1.0

0.5β1

∫

∫
β0

time (s)

0.0

0.1

0.2

-2 0 2

with stdaverage               and              across activations (N = 5046)

c    amplification without reorganization

∫
β1(t)

∫
β0(t)

time (s) 

0.13

0.12

0.125
∫
β0

∫
β0(t)

0-1-2 1 2
time (s) 

0.0

0.5

-0.5

∫
β1

∫
β1(t)

0-1-2 1 2

2.0

1.0

1.5

time (s) 

ga
in

 a
m

pl
itu

de

α(t)

0-1-2 1 2

. . .

neurons

ne
ur

on
s

α(t1)Cij α(t2)Cij

t2t1 tk
150

100

50

0
0

5 10
corr

# 
of

 p
ai

rs 100

50

0
0 5 10

corr

100

50

0
0 5 10

corr

. . .

t1

t2

tk

0

10

a.u.

α(tk)Cij

Figure 6: Figure 6 - see legend
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