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1 Introduction

Spaces that are equipped with a direction have only recently been given more
attention from a topological point of view. The spaces of directed paths are the
defining feature for distinguishing different directed spaces. One reason for studying
directed spaces is their application to the modeling of concurrent programs, where

R. Belton (�) · B. T. Fasy
Montana State University, Bozeman, MT, USA
e-mail: robin.belton@montana.edu; brittany.fasy@montana.edu

R. Brooks
Tulane University, New Orleans, LA, USA
e-mail: rbrooks3@tulane.edu

S. Ebli
EPFL, Lausanne, Switzerland
e-mail: stefania.ebli@epfl.ch

L. Fajstrup
Aalborg University, Aalborg, Denmark
e-mail: fajstrup@math.aau.dk

C. Ray
Northwestern University, Evanston, IL, USA
e-mail: cray@math.northwestern.edu

N. Sanderson
Lawrence Berkeley National Lab, Berkeley, CA, USA
e-mail: nsanderson@lbl.gov

E. Vidaurre
Molloy College, Rockville Centre, NY, USA
e-mail: evidaurre@molloy.edu

© The Author(s) and the Association for Women in Mathematics 2020
B. Acu et al. (eds.), Advances in Mathematical Sciences, Association for
Women in Mathematics Series 21, https://doi.org/10.1007/978-3-030-42687-3_17

255



256 R. Belton et al.

standard algebraic topology does not provide the tools needed [4]. Concurrent
programming is used when multiple processes need to access shared resources.
Directed spaces are models for concurrent program, where paths respecting the
time directions represent executions of programs. In such models, executions are
equivalent if their execution paths are homotopic through a family of directed paths.
This observation has already led to new insights and algorithms. For instance,
verification of concurrent programs is simplified by verifying one execution from
each connected component of the space of directed paths; see [4, 5].

While equivalence of executions is clearly stated in concurrent programming,
equivalence of the directed topological spaces themselves is not well understood.
Directed versions of homotopy groups and homology groups are not agreed upon.
Directed homeomorphism is too strong; whereas, directed homotopy equivalence is
often too weak, to preserve the properties of the concurrent programs. In classical
(undirected) topology, the concept of simplifying a space by a sequence of collapses
goes back to J.H.C. Whitehead [11], and has been studied in [1, 6], among others.
However, a definition for a directed collapse of a Euclidean cubical complex that
preserves spaces of directed paths is notably missing from the literature.

In this article, we consider spaces of directed paths in Euclidean cubical
complexes. Our objects of study are spaces of directed paths relative to a fixed
pair of endpoints. We show how local information of the past links of vertices in a
Euclidean cubical complex can provide global information on the spaces of directed
paths. As an example, our results are applied to study the spaces of directed paths
in the well-known dining philosophers problem. Furthermore, we define directed
collapse so that a directed collapse of a Euclidean cubical complex preserves the
relevant spaces of directed paths in the original complex. Our theoretical work has
applications to simplifying verification of concurrent programs without loops, and
better understanding partial executions in those concurrent programs.

We begin, in Sect. 2, with two motivating examples of how the execution of
concurrent programs can be modeled by Euclidean cubical complexes and directed
path spaces. In Sect. 3, we introduce the notions of spaces of directed paths and
Euclidean cubical complexes. Given the directed structure of these Euclidean
cubical complexes, we do not consider the link of a vertex but the past link of
it. In Sect. 4, we give results on the topology of the spaces of directed paths from
an initial vertex to other vertices in terms of past links. Theorem 1 gives sufficient
conditions on the past links of every vertex of a complex so that spaces of directed
paths are contractible. Theorem 2 gives conditions that are sufficient for the spaces
of directed paths to be connected. In Theorem 3, we give sufficient conditions on the
past link of a vertex so that the space of directed paths from the initial vertex to that
vertex is disconnected. In Sect. 5, we describe a method of collapsing one complex
into a simpler complex, while preserving the directed path spaces.
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2 Concurrent Programs and Directed Path Spaces

We illustrate how to organize possible executions of concurrent programs using
Euclidean cubical complexes and directed spaces. An execution is a scheduling of
the events that occur in a program in order to compute a specific task. In Example 1,
we describe the dining philosophers problem. In Example 2, we illustrate how to
model executions of concurrent programs in the context of the dining philosophers
problem in the case of two philosophers.

Example 1 (Dining Philosophers) The dining philosophers problem originally for-
mulated by E. Dijkstra [2] and reformulated by T. Hoare [7] illustrates issues that
arise in concurrent programs. Consider n philosophers sitting at a round table ready
to eat a meal. Between each pair of neighboring philosophers is a chopstick for
a total of n chopsticks. Each philosopher must eat with the two chopsticks lying
directly to the left and right of her. Once the philosopher is finished eating, she must
put down both chopsticks. Since there are only n chopsticks, the philosophers must
share the chopsticks in order for all of them to eat. The dining philosopher problem
is to design a concurrent program where all n philosophers are able to eat once for
some finite amount of time.

A design of a program is a choice of actions for each philosopher. One example
of a design of a program is where each of the n philosophers does the following:

1. Wait until the right chopstick is available, then pick it up.
2. Wait until the left chopstick is available, then pick it up.
3. Eat for some finite amount of time.
4. Put down the left chopstick.
5. Put down the right chopstick.

While correct executions of this program are possible (e.g., where the philoso-
phers take turns eating alone), this design has states in which every philosopher has
picked up the chopstick to her right and is waiting for the other chopstick. Such a
situation exemplifies a deadlock in concurrent programming, an execution that gets
“stuck” and never finishes.

The design described above also has states that cannot occur. For example,
consider the dining philosophers problem when n = 2. The state in which both
philosophers are finished eating and one is still holding onto chopstick a while the
other is holding chopstick b would imply that a philosopher was able to eat with only
one chopstick—an example of an unreachable state in concurrent programming.

The dining philosophers problem illustrates the difficulties in designing con-
current programs. Difficulties arise since each philosopher must use chopsticks
that must be shared with the neighboring philosophers. Analogously, in concurrent
programming, multiple processes must access shared resources that have a finite
capacity.

The next example illustrates how to model executions of the dining philosophers
problem with a Euclidean cubical complex. When the problem consists of two
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Fig. 1 The Swiss Flag. The pink region is the forbidden region. Any bi-monotone path outside
of F is a possible execution. The set of all executions of two processes, T1 and T2, is called the
state-space Two regions in the state space are of particular interest. The black region is the set of
all unreachable states, and the blue region is the set of all states that are doomed to never complete.
A state is doomed if any path starting at that state leads to a deadlock. The black curves in the
figure are two possible paths in this directed space

philosophers, the Euclidean cubical complex used to model the dining philosophers
problem is often referred to as the Swiss Flag.

Example 2 (Swiss Flag) In the language of concurrent programming, the two
philosophers represent two processes denoted by T1 and T2. The two chopsticks
represent shared resources denoted by a and b. One process is executing the program
PaPbVbVa and the other process is executing the program PbPaVaVb. Here, P
means that a process has a lock on that resource while V means that a process
releases a resource. To model this concurrent program with a Euclidean cubical
complex, we construct a 5×5 grid where the x-axis is labeled by PaPbVbVa , each a
unit apart, and the y-axis is labeled by PbPaVaVb, each also a unit apart (see Fig. 1).
The region [1, 4] × [2, 3] represents when both T1 and T2 have a lock on a. In the
dining philosophers problem, a single chopstick can only be held by one philosopher
at a given time. The mutual exclusion of the chopsticks translates to the shared
resources, a and b, each having capacity one, where the capacity of a resource
is the number of processes that can have access to the resource simultaneously.
We call the region [1, 4] × [2, 3] forbidden since T1 and T2 cannot have a lock
on a at the same time. The region [2, 3] × [1, 4] represents when both T1 and
T2 have a lock on b. This region is also forbidden. The set complement of the
interior of [1, 4] × [2, 3] ∪ [2, 3] × [1, 4] in [0, 5] × [0, 5] is called the Swiss flag
and is the Euclidean cubical complex modeling this program design for the dining
philosophers problem.

In general, the Euclidean cubical complex modeling a concurrent program is
the complement of the interior of the forbidden region. An execution is a directed
path from the initial point to the terminal point. Executions are equivalent if they
give the same output given the same input, which can be interpreted geometrically
as the corresponding paths are dihomotopic in the path space. The Swiss flag has
two distinct directed paths up to homotopy equivalence: one corresponding to T1
using the shared resources first, and the other corresponding to T2 using the shared
resources first. See Fig. 1.
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3 Past Links as Obstructions

In this section, we introduce the notions of spaces of directed paths and Euclidean
cubical complexes. The (relative) past link of a vertex of a Euclidean cubical
complex is defined as a simplicial complex. Studying the contractibility and
connectedness of past links gives us insight on the contractibility and connectedness
of certain spaces of directed paths.

Definition 1 (d-space) A d-space is a pair (X,
−→
P (X)), where X is a topological

space and
−→
P (X) ⊆ P(X) := X[0,1] is a family of paths on X (called dipaths) that

is closed under non-decreasing reparametrizations and concatenations, and contains
all constant paths.

For every x, y in X, let
−→
P

y
x(X) be the family of dipaths from x to y:

−→
P

y
x(X) := {α ∈ −→

P (X) : α(0) = x and α(1) = y}.

In particular, consider the following directed space: the directed real line
−→
R is the

directed space constructed from the real line whose family of dipaths
−→
P (R) consists

of all non-decreasing paths. The Euclidean space
−→
Rn is the n-fold product

−→
R ×· · ·×−→

R with family of dipaths the n-fold product
−→
P (Rn) = −→

P (R)× · · · × −→
P (R).

Furthermore, we can solely focus on the family of dipaths in a d-space and endow
it with the compact open topology.

Definition 2 (Space of Directed Paths) In a d-space (X,
−→
P (X)), the space of

directed paths from x to y is the family
−→
P

y
x(X) with the compact open topology.

By topologizing the space of directed paths, we may now use topological reasoning

and comparison. Since
−→
P

y
x(X) does not have directionality, contractibility and other

topological features are defined as in the classical case. Moreover, observe that the

set
−→
P

y
x(X) might have cardinality of the continuum, but is considered trivial if it is

homotopy equivalent to a point.
The d-spaces that we consider in this article are constructed from Euclidean

cubical complexes. Let p = (p1, . . . , pn),q = (q1, . . . , qn) ∈ Rn. We write
p 6 q if and only if pi ≤ qi for all i = 1, . . . , n. Furthermore, we denote by
q − p := (q1 − p1, . . . , qn − pn) the component-wise difference between q and
p, |p| := �n

i=1 pi is the element-wise sum, or one-norm, of p. Similarly to the
one-dimensional case, the interval [p,q] is defined as {x ∈ Rn : p 6 x 6 q}.
Definition 3 (Euclidean Cubical Complex) Let p,q ∈ Rn. If q,p ∈ Zn and q −
p ∈ {0, 1}n, then the interval [p,q] is an elementary cube inRn of dimension |q−p|.
A Euclidean cubical complex K ⊆ Rn is the union of elementary cubes.

Remark 1 A Euclidean cubical complexK is a subset ofRn and it has an associated
abstract cubical complex. By a slight abuse of notation, we do not distinguish these.
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Every cubical complex K inherits the directed structure from the Euclidean

space
−→
Rn, described after Definition 1. An elementary cube of dimension d is called

a d-cube. Them-skeleton ofK , denoted byKm, is the union of all elementary cubes
contained in K that have dimension less than or equal to m. The elements of the
zero-skeleton are called the vertices of K . A vertex w ∈ K0 is said to be minimal
(resp., maximal) if w 6 v (resp., w 7 v) for every vertex v ∈ K0.

Following [12], we define the (relative) past link of a vertex of a Euclidean
cubical complex as a simplicial complex. Let �n−1 denote the complete simplicial
complex with vertices {1, . . . , n}. Simplices of �n−1 is be identified with elements
j ∈ {0, 1}n. That is, every subset S ⊆ {1, . . . , n} is mapped to the n-tuple with entry
1 in the k-th position if k belongs to S and 0 otherwise. The topological space asso-
ciated to the simplicial complex �n−1 is the one given by its geometric realization.

Definition 4 (Past Link) In a Euclidean cubical complex K in Rn, the past link,
lk−

K,w(v), of a vertex v, with respect to another vertexw is the simplicial subcomplex

of �n−1 defined as follows: j ∈ lk−
K,w(v) if and only if [v − j, v] ⊆ K ∩ [w, v].

Remark 2 While K is a cubical complex, the past link of a vertex in K is always a
simplicial complex.

Remark 3 Often the vertex w and the complex K are understood. In this case, we
denote the past link of v by lk−(v).

Remark 4 Other definitions of the (past) link are found in the literature. Unlike
Definition 4, (past) links are usually subcomplexes of K . However, the (past) links
found in other literature are homeomorphic to the (past) link of Definition 4.

In the following example, we show that a vertex v can have past links with
different homotopy type depending on what the initial vertex w is. We consider
as a Euclidean cubical complex the open top box (Fig. 2) and the past links of the
vertex v = (1, 1, 1), with respect to the vertices w = 0 and w� = (0, 0, 1).

Example 3 (Open Top Box) Let L ⊂ R3 be the Euclidean cubical complex
consisting of all of the edges and vertices in the elementary cube [0, v] and five
of the six two-cubes, omitting the elementary two-cube [(0, 0, 1), v], i.e., the top
of the box. Because the elementary one-cube [v − (0, 0, 1), v] ⊆ L ∩ [0, v] = L,
lk−

L,0(v) contains the vertex in �2 corresponding to j = (0, 0, 1). Similarly, because

the elementary two-cube [v − (0, 1, 1), v] ⊆ L, the past link lk−
L,0(v) contains the

edge in �2 corresponding to j = (0, 1, 1). However, because the elementary two-
cube [v − (1, 1, 0), v] is not contained in L, lk−

L,0(v) does not include the edge
corresponding to j = (1, 1, 0). Instead taking the initial vertex to be w = (0, 0, 1),
we get that lk−

L,w(v) consists of the two vertices corresponding to j = (0, 1, 0) and
j� = (1, 0, 0). See Fig. 2.
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Fig. 2 The Open Top Box. Left: the open top box and the geometric realization of the past link
of the red vertex v = (1, 1, 1), with respect to the black vertex 0. The geometric realization of
lk−

L,0(v) contains two edges of a triangle, since the two red faces are included in [0, v] and three
vertices, since the three red edges are included in [0, v]. Right: the open top box and the geometric
realization of the past link of the red vertex v = (1, 1, 1), with respect to the black vertex w =
(0, 0, 1). The geometric realization of lk−

L,w(v) consists only of two vertices of a triangle, since the
two red edges are included in [w, v]

4 The Relationship Between Past Links and Path Spaces

In this section, we illustrate how to use past links to study spaces of directed paths
with an initial vertex of 0. In particular, the contractibility and connectedness of
all past links guarantees the contractibility and connectedness of spaces of directed
paths. We also provide a partial converse to the result concerning connectedness.

Theorem 1 (Contractibility) Let K ⊂ Rn be a Euclidean cubical complex with

minimal vertex 0. Suppose for all k ∈ K0, k �= 0, the past link lk−
0 (k) is contractible.

Then, all spaces of directed paths
−→
P k

0(K) are contractible.

Proof By [12, Prop. 5.3], if
−→
P

k−j
0 (K) is contractible for all j ∈ {0, 1}n, j �= 0,

and j ∈ lk−(k), then −→
P k

0(K) is homotopy equivalent to lk−(k). Hence, it suffices
to see that all the spaces

−→
P

k−j
0 (K) are contractible. This follows by structural

induction on the partial order on vertices in K .

The start is at
−→
P

0+ei
0 (K), where ei is the i-th unit vector, and 0+ ei ∈ K0. If the

edge [0, 0 + ei] is in K , then
−→
P

0+ei
0 (K) is contractible. Otherwise, lk−

0 (0 + ei ) is
empty, which contradicts the hypothesis that all of the past links are contractible. By

structural induction, using also that
−→
P 0

0 is contractible, the theorem now holds. ��
Now, we give an analogous sufficient condition for when spaces of directed paths

are connected. We provide two different proofs of Theorem 2. The first proof shows
how we can use [9, Prop. 2.20] to get our desired result. The second proof uses
notions from category theory and is based on the fact that the colimit of connected
spaces over a connected category is connected.

Theorem 2 (Connectedness) With K as above, suppose all past links lk−
0 (k) of

all vertices k �= 0 are connected. Then, for all k ∈ K0, all spaces of directed paths−→
P k

0(K) are connected.
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In this first proof we show that [9, Prop. 2.20] is an equivalent condition to all
past links being connected.

Proof In [9, Prop. 2.20], a local condition is given that ensures that all spaces of
directed paths to a certain final point are connected. Here, we explain how the local
condition is equivalent to all past links being connected. Their condition is in terms
of the local future; however, we reinterpret this in terms of local past instead of local
future. Since we consider all spaces of directed paths from a point (as opposed to to
a point), then reinterpreting the result in terms of local past is the right setting we
should look at. The local condition is the following: for each vertex, v, and all pairs
of edges [v − er , v], [v − es , v] in K , there is a sequence of two-cells {[v − eki −
eli , v]}mi=1, each of which is in K such that li = ki+1 for i = 1, . . . , m − 1, k1 = r

and lm = s. Now, we show that this local condition is equivalent to ours. In the past
link considered as a simplicial complex, such a sequence of two-cells corresponds
to a sequence of edges from the vertex r to the vertex s. For x, y ∈ lk−(v), they are
both connected to a vertex via a line. And those vertices are connected. Hence, the
past link is connected.

Vice versa: Suppose lk−(v) is connected. Let p, q be vertices in lk−(v) and
let γ : I → lk−(v) ∈ �n−1 be a path from p to q. The sequence of simplices
traversed by γ , S1, S2, . . . , Sk , satisfies Si ∩Si+1 �= ∅. Moreover, the intersection is
a simplex. Let pi ∈ Si ∩ Si+1. A sequence of pairwise connected edges connecting
p to q is constructed by such sequences from pi to pi+1 in Si+1 thus providing a
sequence of two-cells similar to the requirement in [9]. Hence, by [9], if all past

links of all vertices are connected, then all
−→
P k

0 are connected ��
This second proof of Theorem 2 has a more categorical flavor.

Proof We give a more categorical argument which is closer to the proof of

Theorem 1. In [10, Prop. 2.3 and Equation 2.2], the space of directed paths
−→
P k

0

is given as a colimit over
−→
P

k−j
0 . The indexing category is JK with objects {j ∈

{0, 1}n : [k − j] ⊆ K} and morphisms j → j� for j ≥ j� given by inclusion of
the simplex �j ⊂ �j� . The geometric realization of the index category is the past
link which with our requirements is connected. The colimit of connected spaces
over a connected category is connected. Hence, by induction as above, beginning

with edges from 0, the directed paths
−→
P

k−j
0 are all connected and the conclusion

follows. ��
Remark 5 Our conjecture is that similar results for k-connected past links should
follow from the k-connected Nerve Lemma.

Remark 6 The statements of both Theorems 1 and 2 concern past links and path
spaces defined with respect to a fixed initial vertex. To see why past links depend on
their initial vertex, consider the open top box of Example 3. All past links in L with

respect to the initial vertex 0 are contractible, but
−→
P v

w�(L), where w� = (0, 0, 1)
and v = (1, 1, 1), is not contractible. It is in fact two points. Note, this does not

contradict Theorem 1, which only asserts that
−→
P v

0(L) is contractible; see Fig. 2.
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We now show how Theorems 1 and 2 can be used to study the spaces of the
directed paths in slight modifications of the dining philosophers problem.

Example 4 (Three Concurrent Processes Executing the Same Program) We con-
sider a modification of Example 1 where we have three processes and two resources
each with capacity two. All processes are executing the program PaPbVbVa . The
Euclidean cubical complex modeling this situation has three dimensions, each
representing the program of a process. Since each resource has capacity two, it is not
possible to have a three way lock on any of the resources. The three processes have a
lock on a in the region [Pa, Va]×3, which is the cube [(1, 1, 1), (4, 4, 4)]. Similarly,
the three processes have a lock on b in the region [Pb, Vb]×3 which is the cube
[(2, 2, 2), (3, 3, 3)]. The forbidden region is the union of these two sets which is
[(1, 1, 1), (4, 4, 4)]. We can model this concurrent program as a three-dimensional
Euclidean cubical complex and the forbidden region is the inner 3× 3× 3 cube.

In order to analyze the connectedness and contractibility of the spaces of directed
paths with initial vertex 0, we study the past links of the vertices ofK . First, we show
that not all past links are contractible. Let v = (4, 4, 4). Then, lk−

K,0(v) consists of
all j ∈ {0, 1}3 except (1, 1, 1). The past link does not contain (1, 1, 1) because the
cube [(3, 3, 3), (4, 4, 4)] is not contained in K , but [v − j, v] ⊂ K for all other
j. Therefore, lk−

K,0(v) is the boundary of the two simplex (see Fig. 3). Because the
boundary of the two simplex is not contractible, the hypothesis of Theorem 1 is not
satisfied. Hence, we cannot use Theorem 1 to study the contractibility of the spaces
of directed paths.

Next, we show that all past links are connected. If we directly compute the past
link lk−

K,0(k) for all k ∈ K0, we find that the past link consists of either a zero
simplex, one simplex, the boundary of the two simplex, or a two simplex. All these
past links are connected. Theorem 2 implies that for all k ∈ K0, the space of directed

paths,
−→
P k

0(K) is connected.

Fig. 3 Three processes, same program. Illustrating lk−
K,0(v) where K is the cube [0, (5, 5, 5)]

minus the inner cube, [(1, 1, 1), (4, 4, 4)], and v = (4, 4, 4). The geometric realization of the
simplicial complex lk−

K,0(v) is the boundary of the two simplex since the three pink faces and
edges are included in [0, v]
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We can generalize this example to n processes and two resources with capac-
ity n − 1 where all processes are executing the program PaPbVbVa. For all
n, Theorem 2 shows that all spaces of directed paths are connected.

The converse of Theorem 2 is not true. To see this, and give the conditions under
which the converse does hold, we need to introduce the following definition:

Definition 5 (Reachable) The point x ∈ K is reachable from w ∈ K0 if there is
a path from w to x. A subcomplex of K is induced by the set of points that are
reachable from a vertex w.

Example 5 (Boundary of the 3 × 3 × 3 Cube with Top Right Cube) Let K be the
Euclidean cubical complex that is the boundary of the 3 × 3 × 3 cube along with
the cube [(2, 2, 2), (3, 3, 3)]. Observe that all spaces of directed paths with initial
vertex 0 are connected. However, K has a disconnected past link at v = (3, 2, 2). If
we consider the subcomplex K̂ that is reachable from 0, then K̂ is the boundary
of the 3 × 3 × 3 cube. The past links of all vertices in K̂ are connected. This
motivates the conditions given in Theorem 3 of removing the unreachable points
of a Euclidean cubical complex. The connected components of a disconnected past
link in the remaining complex can then be represented by directed paths from the
initial point and not only locally (Fig. 4).

Theorem 3 (Realizing Obstructions) Let K be a Euclidean cubical complex with

initial vertex 0. Let K̂ ⊂ K be the subcomplex reachable from 0. If for v ∈ K̂0, the

past link in K̂ is disconnected, then the path space
−→
P v

0(K) is disconnected.

Proof Let v be a vertex such that lk−
K,0(v) is disconnected and let j1, j2 be vertices

in lk−
K̂
(v) in different components. The edges [v − ji , v] are then in K̂ and, in

particular, v − ji ∈ K̂0. Hence, there are paths μi : −→
I → K̂ such that μi (0) = 0

and μi (1) = v − ji .

Fig. 4 Motivating reachability condition. Let K be the boundary of the 3× 3× 3 cube union with
[(2, 2, 2), (3, 3, 3)]. Then, the geometric realization of the simplicial complex lk−

K,0(v) is an edge
and a point since the three pink edges and one face are included in [(0, 0, 0), v]
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By [3], there are μ̂i which are dihomotopic to μi and such that μ̂i is combinato-
rial, i.e., a sequence of edges in K̂ . Let γi be the concatenation of μ̂i with the edge
[v − ji , v].

Suppose for contradiction that γ1 and γ2 are connected by a path in
−→
P v

0(K).

Let H : −→
I × I → K be such a path with H(t, 0) = γ1(t) and H(t, 1) = γ2(t).

Since H(t, s) is reachable from 0, H maps to K̂ .

By [3], there is a combinatorial approximation Ĥ : −→
I × I → K̂2 to the 2-

skeleton of K̂ ⊂ K . Let B be the open ball centered around v with radius 1/2. Since
Ĥ is continuous, the inverse image of B under Ĥ is a neighborhood of {1} × I ⊂−→
I × I . For 0 < � < 1/2, this neighborhood contains a strip (1 − �, 1] × I (by
compactness of I ). Then Ĥ (1 − �/2 × I ) gives a path connecting the two edges
[v−ji , v]. This path traverses a sequence of 2-cubes (the carriers). These correspond
to a sequence of edges in the past link that connect j1 and j2, which contradicts the
assumption that they are in different components. Therefore, γ1 and γ2 correspond

to two points in
−→
P v

0(K) that are not connected by a path. ��
In general, the reachability condition in Theorem 3 eliminates the spurious

disconnected past links that could appear in the unreachable parts of a Euclidean
cubical complex.

Example 6 To see how Theorem 3 can be applied, consider Example 2, the Swiss
flag. The Swiss flag has two vertices with disconnected past links with respect to 0
namely (4, 3) and (3, 4). These disconnected past links imply that Theorem 2 is
inconclusive. If the unreachable section of the Swiss flag is removed, we obtain a
new Euclidean cubical complex in which the vertex v = (4, 4) has a disconnected

past link, consisting of two points. By Theorem 3, the path space
−→
P v

0(K) is also

disconnected. In fact,
−→
P v

0(K) has two points, representing the dihomotopy classes
of paths which pass above the forbidden region, and those paths which pass below.

The disconnected path space,
−→
P v

0(K), found in the previous example helps
illustrate the following: given two vertices w and v in a Euclidean cubical complex

K , if the path space
−→
P v

w(K) is disconnected, then there exists a vertex in [w, v] that
has a disconnected past link with respect to w (the vertices (4, 3) and (3, 4) in the
Swiss flag). Ifw = 0, then we get the contrapositive of Theorem 2. IfK is reachable
from 0, Theorem 3 allows us to draw conclusions about the space of directed paths.

5 Directed Collapsibility

To simplify the underlying topological space of a d-space while preserving topolog-
ical properties of the associated space of directed paths, we introduce the process of
directed collapse. The criteria we require to perform directed collapse on Euclidean
cubical complexes involves the topology of the past links of the vertices of the
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complex. We defined the past links as simplicial complexes that are not themselves
directed, so our topological criteria are in the usual sense.

Definition 6 (Directed Collapse) Let K be a Euclidean cubical complex with
initial vertex 0. Consider σ, τ ∈ K such that τ � σ , σ is maximal, and no other
maximal cube contains τ . Let K � = K \ {γ ∈ K|τ ⊆ γ ⊆ σ }. K � is a directed

(cubical) collapse ofK if, for all v ∈ K �
0, lk

−
K(v) is homotopy equivalent to lk−

K �(v).
The pair τ, σ is then called a collapsing pair.

K � is a directed 0-collapse ofK if for all v ∈ K �
0, lk

−
K(v) is connected if and only

if lk−
K �(v) is connected.

Remark 7 As in the simplicial case, when we remove σ from the abstract cubical
complex, the effect on the geometric realization is to remove the interior of the cube
corresponding to σ .

Remark 8 Note for finding collapsing pairs, (τ, σ ), using Definition 6, with the
geometric realization of σ given by the elementary cube, [w − j,w], it is sufficient
to only check v ∈ K �

0 such that v = w − j� where j − j� > 0. Otherwise the past
links, lk−

K(v) and lk−
K �(v), are equal.

Definition 7 (Past Link Obstruction) Let w ∈ K0. A past link obstruction (type-

∞) in K with respect to w is a vertex v ∈ K0 such that lk
−
K,w(v) is not contractible.

A past link obstruction (type-0) in K with respect to w is a vertex v ∈ K0 such that
lk−

K,w(v) is not connected.

Directed collapses preserve some topological properties of the space of directed
paths. In particular:

Corollary 1 If there are no type-∞ past link obstructions, then all spaces of

directed paths from the initial point are contractible. If there are no type-0 past

link obstructions, all spaces of directed paths from the initial point are connected.

Proof Contractibility is a direct consequence of Theorem 1. Likewise, connected-
ness follows from Theorem 2. ��
Corollary 2 (Invariants of Directed Collapse) If we have a sequence of directed

collapses from K to K �, then there are no obstructions in K iff there are no

obstructions in K �.

Remark 9 (Past Link Obstructions are Inherently Local) The past link of a vertex is
constructed using local (rather than global) information from the cubical complex.
Therefore, a past link obstruction is also a local property, which is not dependent on
the global construction of the cubical complex.

Below, we provide a few motivating examples for our definition of directed
collapse. In general, we want our directed collapses to preserve all spaces of directed
paths between the initial vertex and any other vertex in our cubical complex.
Notice, τ from Definition 6 is a free face of K . Performing a directed collapse
with an arbitrary free face of a directed space K with minimal element 0 ∈ K0 and
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maximal element 1 ∈ K0 can modify the individual spaces of directed paths
−→
P v

0(K)

and
−→
P 1

v(K) for v ∈ K0.

When
−→
P 1

v(K) = ∅, we call v a deadlock. When
−→
P v

0(K) = ∅, we call
v unreachable. Deadlocks and unreachable vertices are in a sense each others
opposites. Notice if we take the same directed space K yet reverse the direction of
all dipaths, then deadlocks become unreachable vertices and vice versa. However,
as Examples 7 and 8 illustrate, the creation of an unreachable vertex in the process
of a directed collapse might result in a past link obstruction at a neighboring vertex
while the creation of a deadlock does not.

Example 7 (3×3 Grid, Deadlocks and Unreachability) Let K be the Euclidean
cubical complex in R2 that is the 3 × 3 grid. Consider the Euclidean cubical
complexes K � and K �� obtained by removing (τ, σ ) with τ = [(1, 3), (2, 3)], σ =
[(1, 2), (2, 3)] and (τ �, σ �) with τ � = [(1, 0), (2, 0)], σ � = [(1, 0), (2, 1)], respec-
tively. While K � is a directed collapse of K , K �� is not a directed collapse of K
because K �� introduces a past link obstruction at (2, 1). So, (τ, σ ) is a collapsing
pair while (τ �, σ �) is not. Collapsing K to K � creates a deadlock at (1, 3) but this
does not change the space of directed paths from the designated start vertex 0 to
any of the vertices between 0 and the designated end vertex (3, 3) (seeK � in Fig. 5).
However, collapsing K to K �� creates an unreachable vertex (2, 0) from the start
vertex 0 (see K �� in Fig. 5) which does change the space of directed paths from 0 to
(2, 0) to be empty. Hence not all spaces of directed paths starting at 0 are preserved.
This motivates our definition of directed collapse.

Our next example shows how directed collapses can be performed with collaps-
ing pairs (τ, σ ) when τ is of codimension one and greater.

Example 8 (3×3 grid, Edge and Vertex Collapses) Consider again the Euclidean
cubical complex K from Example 7. If we allow a collapsing pair (τ, σ ) with τ of
dimension greater than 0, we may introduce deadlocks or unreachable vertices. In
particular, collapsing the free edge τ = [(1, 3), (2, 3)] of the top blue square σ =

Fig. 5 Illustrating Example 7. On the left: the cubical complex K with initial vertex 0 and final
vertex (3, 3). In the center: The cubical complexK � which is a directed collapse ofK . The deadlock
in blue does not change the space of directed paths from 0 to any of the vertices between 0
and (3, 3). On the right: the cubical complex K �� which is not a directed collapse of K . The space
of directed paths into the unreachable red vertex, (2, 0), becomes empty. The empty path space is
reflected in the topology of the past link of the red vertex (2, 1) (see Example 8)
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(a) Edge Collapse (b) Vertex Collapse

Fig. 6 Illustrating Example 8. On the left: the collapsing of the free edge in the blue squares is an
admitted directed collapse. The collapsing of the free edge in the red squares is not an admitted
directed collapse. On the right: the collapsing of the free vertex in the yellow squares is an admitted
directed collapse

[(1, 2), (2, 3)] in Fig. 6 changes the space of directed paths
−→
P

(3,3)
(1,3)(K) from being

trivial to empty in K\{γ |τ ⊆ γ ⊆ σ }. Yet we care about preserving the space of
directed paths from our designated start vertex 0 to any of the vertices (i, j)with 0 ≤
i, j ≤ 3 since we ultimately are interested in preserving the path space

−→
P

(3,3)
0 (K).

Because of this, such collapses should be allowed in our directed setting. Note that,
in these cases, the past link of all vertices remains contractible. However, collapsing
the free edge τ � = [(1, 0), (2, 0)] of the bottom red square σ � = [(1, 0), (2, 1)] in
Fig. 6 changes the path space

−→
P

(2,0)
0 (K) from being trivial to empty. This change

is reflected in the non-contractible past link of (2, 1) in K\{γ |τ � ⊆ γ ⊆ σ �} that
consists of the two vertices j = (1, 0) and j� = (0, 1) but not the edge j�� = (1, 1)
connecting them. Restricting our collapsing pairs to only include τ of dimension
0 allows for only two potential collapses, the corner vertices (0, 3) and (3, 0) into
the yellow squares [(0, 2), (1, 3)] and [(2, 0), (3, 1)], respectively. Neither of these
collapses create deadlocks or unreachable vertices and the contractibility of the past
link at all vertices is preserved. Performing these corner vertex collapses exposes
new free vertices that can be a part of subsequent collapses.

Lastly, we explain how the Swiss flag can be collapsed using a sequence of
zero-collapses. The Swiss flag contains uncountably many paths between the initial
and final vertex. After performing the sequence of zero-collapses as described
in Example 9, the Swiss flag has only two paths up to reparametrization between
the initial and final vertex. These two paths represent the two dihomotopy classes of
paths that exists for the Swiss flag. Referring back to concurrent programming, we
interpret the two paths as two inequivalent executions: either the first process holds
a lock on the two resources then releases them so the other process can place a lock
on the resources or vice versa.

Example 9 (0-Collapsing the Swiss Flag) The Swiss flag considered as a Euclidean
cubical complex in the 5 × 5 grid has vertices with connected past links, except
at (4, 3) and (3, 4). The vertex (2, 2) and the cube [1, 2] × [1, 2] are a 0-collapsing
pair. The vertex (3, 3) and the cube [3, 4] × [3, 4] are not, since that collapse would
produce a disconnected past link at (4, 4). A sequence of 0-collapses preserving
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Fig. 7 Zero-collapsing the Swiss Flag. A sequence of zero-collapses is presented from the top left
to bottom right. At each stage, the faces and vertices shaded in blue represent the zero-collapsing
pairs. The result of the sequence is shown in the bottom right which is a one-dimensional Euclidean
cubical complex and one two-cube

the initial and final point will give a one-dimensional Euclidean cubical complex
and one 2-cube. Specifically, we get the edges [0, 1]× {0}, {1}× [0, 1], {1}× [1, 3],
[1, 3]×{1}, [1, 2]×{3}, {3}×[1, 2], {2}×[3, 4], [3, 4]×{2}, [2, 3]×{4}, {4}×[2, 3],
the square [3, 4] × [3, 4], and lastly the edges {4} × [4, 5] and [4, 5] × {5} (Fig. 7).

6 Discussion

Directed topological spaces have a rich underlying structure and many interest-
ing applications. The analysis of this structure requires tools that are not fully
developed, and a further investigation into these methods will lead to a better
understanding of directed spaces. In particular, the development of these notions,
such as directed collapse, may lead to a better understanding of equivalence of
directed spaces and their spaces of directed paths.

Interestingly, when comparing directed collapse with the notion of cubical
collapse in the undirected case, two main contrasts arise. First, the notion of
directed collapse is stronger than that of cubical collapse; any directed collapse is
a cubical collapse, but not all cubical collapses satisfy the past link requirement
of directed collapse. However, directed collapse is not related to existing notions
of dihomotopy equivalence which involve continuous maps between topological
spaces that preserve directed paths. Hence, directed collapse contrasts cubical
collapse in the undirected case since any two spaces related by cubical collapses
are homotopic. This contrast suggests the need for dihomotopy equivalence with
respect to an initial point.
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Directed collapse may not preserve dihomotopy equivalence, so we can collapse
more than, e.g., Kahl. By Theorem 2, if K � is a directed collapse of K with respect
to v and K � has trivial spaces of directed paths from v, then so does K . Similarly,
if all spaces of directed paths are connected in K �, then all spaces of directed paths
are connected inK . Hence, our definition of directed collapsibility preserves spaces
of directed paths with an initial vertex of 0. Preserving spaces of directed paths
allows us to study more types of concurrent programs and preserve notions of
partial executions.

We plan to pursure many future avenues of research in the directed topological
setting. First, we hope to find necessary and sufficient conditions for a pair of cubical
cells (τ, σ ) to be a collapsing pair. The key will be to have a better understanding
of what removing a cubical cell does to the past link of a complex. Additionally, we
would like to find directed conterparts to the various types of simplicial collapses.
For example, is there a notion of strong directed collapse? As strong collapse also
considers the link of a vertex, a consideration of how strong collapse extends to a
directed setting seems natural.

Next, we would like to learn more about past link obstructions. We know
that performing a directed collapse will not alter the space of directed paths of
a Euclidean cubical complex; however, if we are unable to perform a directed
collapse due to a past link obstruction, what happens to the space of directed paths?
Theorem 3 is a start in understanding what happens to spaces of directed paths for 0
collapses. Another question may be, in what way are obstructions of type∞ realized
as non-contractible spaces of directed paths?

Another direction of research we hope to pursue is defining a way to compute
a directed homology that is collapsing invariant. Even the two-dimensional setting
(where the cubes are at most dimension two) has proved to be difficult, as adding
one two-cell can have various effects, depending on the past links of the vertices
involved. We would like to classify the spaces where such a dynamic programming
approach would work.

Lastly, many computational questions arise on how to implement the collapse of
a directed cubical complex. In [8], an example of collapsing a three-dimensional
cubical complex is implemented in C++. This algorithm could be used as a model
when handling the directed complex.

Many interesting theoretical and computational questions continue to emerge in
the field of directed topology. We hope that our research excites others in studying
cubical complexes in the directed setting.
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