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Optimization, a key tool in machine learning and statistics, relies on regularization to 
reduce overfitting. Traditional regularization methods control a norm of the solution to 
ensure its smoothness. Recently, topological methods have emerged as a way to provide a 
more precise and expressive control over the solution, relying on persistent homology to 
quantify and reduce its roughness. All such existing techniques back-propagate gradients 
through the persistence diagram, which is a summary of the topological features of a 
function. Their downside is that they provide information only at the critical points of the 
function. We propose a method that instead builds on persistence-sensitive simplification 
and translates the required changes to the persistence diagram into changes on large 
subsets of the domain, including both critical and regular points. This approach enables 
a faster and more precise topological regularization, the benefits of which we illustrate 
with experimental evidence.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Regularization is key to many practical optimization techniques. It allows the user to add a prior about the expected 
solution — e.g., that it needs to be smooth or sparse — and optimize it together with the main objective function. Classical 
regularization techniques [4], such as �1- and �2-norm regularization, have been studied in statistics and signal process-
ing since at least the 1970s. These techniques are especially important in machine learning, where problems are often 
ill-posed and regularization helps prevent overfitting. Accordingly, various regularization techniques are not only used in 
machine learning research [23,20], but are also incorporated into the standard optimization software and routinely used in 
applications.

Recently, several authors have begun to explore the use of topological methods to regularize the objective function. Those 
that use persistent homology use it to measure either the shape of the data set or the topological complexity of the learned 
function. For instance, Chen et al. [8] use persistence to describe the complexity of the decision boundary in a classifier and 
add terms to the loss to keep this boundary topologically simple. Brüel-Gabrielsson et al. [5] use persistence as a descriptor 
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of the topology of the data and introduce a family of losses to control the shape of the data once it passes through a neural 
network.

All the methods that incorporate persistence into the loss function [8,5,18] rely on the same observation. Persistent 
homology describes data via a diagram, a collection of points {bi , di} in the plane, that encodes the topological features of 
the data: components of the decision boundary, “wrinkles” in the learned function, cycles in the point set once it passes 
through the neural network. Each point represents the birth bi and death di of a topological feature. Each coordinate 
depends on the value of the function on a set of points. In the simplest case, (bi, di) = ( f (x), f (y)) for some x, y in the 
input, where f is the learned function. In the more sophisticated cases, each point in the persistence diagram is generated 
by a handful of input points. For example, consider the Vietoris–Rips filtration of a point cloud. The birth and death values 
bi and di are critical values of two simplices of dimension q and q + 1. By definition, a critical value of a simplex is the 
length of its longest edge, so bi = ‖xi,1 − xi,2‖ and di = ‖xi,3 − xi,4‖ for some four points xi,k , k = 1, 2, 3, 4 of the point 
cloud. Thus the gradient will only back-propagate through the coordinates of these four points. Same is true for the weak 
α-filtration used in [5], since a critical value in [5] is also defined as the length of the longest edge. Accordingly, if a loss L
prescribes moving a point in the persistence diagram via a gradient (∂L/∂bi , ∂L/∂di), one can back-propagate it to update 
the model parameters.

Although persistent homology describes a family of topological features of different dimensions (connected components, 
loops, voids), most practical examples have focused on 0-dimensional features (connected components generated by the 
extrema of the input function). In this case, a natural loss is one that penalizes and tries to remove low-persistence features, 
which are interpreted as noise: e.g., L( f ) = ∑

(di−bi)≤ε(di − bi)
2. Persistence-sensitive simplification [11,2,3] offers a direct 

solution to this problem. It prescribes how to modify a given input function f to find a function g that is ε-close to f , 
but without the noisy features. Given such a g , which by construction minimizes the diagram loss L above, one can use 
‖ f − g‖2 as a term in the loss. In the context of learning, this approach offers a major advantage: by replacing a complicated 
non-convex problem with a smooth unconstrained convex problem, we get gradients not only on the critical points of f , 
but also on the regular points whose values must be changed to topologically simplify the function; see Fig. 1.

Our contributions are:

• a method to control the topological complexity of a function by incorporating persistence-sensitive simplification into 
the training;

• comparison of the training results after back-propagating gradients through the diagram vs. using persistence-sensitive 
optimization;

• experiments that illustrate that our method is significantly faster than optimizing a loss by only back-propagating 
through the diagram;

• experiments with data that illustrate the utility of controlling the topology of the learned function.

Put together, these findings motivate a more extensive study of techniques for topological optimization beyond only those 
based on back-propagating through the diagram. The approach described in this paper works for only one loss formulation, 
but its underlying ideas are applicable more broadly.

We note that topological methods have found a much broader use in machine learning than regularization. The authors 
of [15] differentiate through persistence diagrams to learn filter functions on graphs. In [6], the authors study the conver-
gence of stochastic subgradient descent of a functional based on persistence. An important line of work involves developing 
techniques to incorporate topological features detected in data into machine learning algorithms [14,7,1,17]. Although there 
is some overlap in methods with these research directions (notably propagating loss through the persistence diagram), 
our work is focused on regularization. Persistence has also been used more broadly to characterize the behavior of neural 
networks [13,22,12].

2. Background

We recall the relevant background in topological data analysis [10], focusing specifically on 0-dimensional persistent 
homology, which we introduce using an auxiliary computational construction, merge trees.

Merge trees Let f : X →R be a function on a topological space X . A merge tree tracks evolution of connected components 
in the sub-level sets f −1(−∞, a] of the function, as we vary the threshold a. Formally, we identify two points x, y of X , if 
f (x) = f (y) = a and x and y belong to the same connected component of the sub-level set f −1(−∞, a]. The quotient of X
by this equivalence relation is called a merge tree of f .

Throughout the paper we use graphs to approximate continuous spaces, so we briefly dissect the above definition for 
functions on graphs. Let f : G → R be a function on a graph G = (V , E), defined on the vertices and linearly interpolated 
on the edges. For simplicity, we assume that all the values of f on the vertices are distinct and index the vertices V = {vi}
so that f (vi) < f (vi+1). The merge tree of f is a graph T = (V , ET ) such that an edge (vi, v j) for i < j is present in T if 
and only if vi and v j belong to the same connected component C of f −1(−∞, f (v j)] and there does not exist k such that 
i < k < j and vk ∈ C . A merge tree T is not necessarily a tree — it is a forest, with a tree for every connected component of 
G — but the distinction is minor for this paper.
2
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Fig. 1. (a) Function on a graph, with gradients on critical points prescribed by the diagram loss. (b) Persistence diagram of this function. Points closer to the 
diagonal correspond to smaller fluctuations in the function, and we interpret them as topological noise. ε indicates the level of desired simplification that 
generates the gradients in (a) and (d). (c) Merge tree of the function, with branches highlighted in different color. The branches translate into the points in 
the persistence diagram of the matching color. (d) Gradients prescribed by the persistence-sensitive optimization (PSO loss). The gradients are present both 
on critical and regular points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

T is naturally decomposed into branches; see Fig. 1. A branch B ⊆ V tracks a component of the sub-level set of f that 
first appears at a local minimum vb ∈ B . This component disappears by merging into another branch B ′ that appeared at 
a lower local minimum v ′

b . B merges into B ′ at a saddle vd ∈ B ′ . We say that B is born at f (vb) and it dies at f (vd). 
The branch of the tree, born at the global minimum, that never merges into a deeper branch dies at ∞, by definition. The 
persistence pers(B) of a branch B is defined as the absolute value of the difference between its death and birth values.

Persistence A 0-dimensional persistence diagram, denoted Dgm( f ), is another summary of the connectivity of the sub-level 
sets of f . It is a multiset of points in the (extended) plane: a branch B , born at f (vb) that dies at f (vd) is summarized by 
the point ( f (vb), f (vd)). Points closer to the diagonal represent shorter branches and we interpret them as noise.

Although we have defined everything in terms of the sub-level sets, the definition for super-level sets, f −1[a, ∞) is 
symmetric, with maxima replacing the minima. We use both constructions throughout the paper.

If graph G has n vertices and m edges, then a merge tree on G can be computed in O (n log n + mα(m)), where α is the 
inverse Ackermann function. It follows that a 0-dimensional persistence diagram can be computed in the same time.

To visualize the topological changes in the model during optimization, we stack persistence diagrams next to each other 
to obtain what is called a vineyard. Formally, the vineyard of a family of functions f i is a multiset of points

{(i,bi
j,di

j) | (bi
j,di

j) are points of the persistence diagram of f i}.
Thus, vineyards are 3-dimensional objects with coordinates (time, birth, death). In order to plot them, we project a vineyard 
into (time, persistence) coordinates. In all our figures that show vineyards, we plot the multiset of points (i, |di

j − bi
j |). In 

other words, over each i (for example, a training epoch) we plot all persistences of the corresponding diagram. In this 
projection, the smaller the persistence of a point, the closer the point to the horizontal axis.

Simplification An important property of persistence is stability: a small perturbation of function f causes a small perturba-
tion of the persistence diagram Dgm( f ). The formal statement is the celebrated Stability Theorem:

dB(Dgm( f ),Dgm(g)) ≤ ‖ f − g‖∞,

where f and g are two real-valued functions on the same domain and dB denotes the bottleneck distance. This theorem is 
one of the justifications for treating points close to the diagonal as topological noise.

This view suggests getting rid of the topological noise. Let f : G →R be a function on a graph G . A function g : G →R
is called its ε-simplification, if ‖ f − g‖∞ ≤ ε and Dgm(g) = {(b, d) ∈ Dgm( f ) | |d − b| > ε}. In other words, g is ε-close to 
f but its persistence diagram has only those points whose persistence exceeds ε. In the case of 0-dimensional persistence, 
ε-simplification always exists and can be computed in the same time as a merge tree [11,2,3].

3. Method

We start with the standard supervised learning problem. Given training data xi with labels yi , we want to learn a model 
fθ , with parameters θ , that approximates yi given xi . Although this framework applies more generally, throughout the paper 
we focus on the case where fθ is a neural network.

Suppose we are solving a regression problem. In this case, the input labels are scalars, yi ∈ R, and our network maps 
from some (typically) Euclidean space into reals, fθ : Rd →R. The learning process is usually a form of gradient descent on 
3
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the network parameters with respect to a user-chosen loss, for example, the mean-squared error (MSE), L(θ) = ∑
( fθ (xi) −

yi)
2/n.
Ideally, we would like to topologically simplify the model fθ either on its entire domain, or at least on the “data mani-

fold,” the subset of the domain that contains all possible data. Unfortunately, there are no algorithms to solve this problem 
— topological methods require a combinatorial representation of the domain — so we resort to a standard approximation.

We take the domain of the network fθ to be the k-nearest neighbors graph on the training set X̂ : each training sample is 
a vertex, and two vertices are connected if and only if one of them is among the k-nearest neighbors of the other one. The 
k-NN graph G approximates the data manifold. We can increase the quality of this approximation by sampling additional 
points in the neighborhood of our input. In the experiments in Section 6, we draw n additional points from a normal 
distribution, centered on each training data point, x ∈ X̂ , which results in a graph with (n + 1) · | X̂| vertices. (Although we 
don’t know the true label on the extra points, we don’t need it for the topological simplification.) Both because computing 
a k-NN graph is expensive for high-dimensional data and because it helps to control noise, in some experiments we build 
the k-NN graph on the lower-dimensional projection of X̂ using PCA.

We use merge trees to compute an ε-simplification g of our model fθ . For every vertex v , we find its first ancestor u
that lies on a branch with persistence at least ε. (If v is already on such a branch, then u = v .) We set g(v) = fθ (u). The 
effect of this operation on the merge tree is that all the branches with persistence less than ε are removed. Fig. 1 shows an 
example. We choose ε that preserves only the two longest branches: the branch corresponding to the global minimum (the 
purple branch on the left, with infinite persistence) and the blue branch on the right. Four shorter branches (light-green, 
yellow, dark-green, and pink) are removed, if we change the function values as indicated by the arrows.

Definition 3.1. Given ε, let g be an ε-simplification of fθ . We view g as constant with respect to weights θ . The PSO loss is 
defined as

LP S O ( f ) = 1

2
‖ fθ − g‖2 = 1

2

∑

v∈G

| fθ (v) − g(v)|2.

Applying simplification Given an ε-simplification g of fθ , we could add a term λ · ‖ fθ − g‖2 to the loss and use a single 
optimizer. Instead, we opted for a different approach by alternating between the standard training and the topological 
phases, with a separate optimizer for each phase. A key advantage of this separation is that it keeps two histories of the 
gradients, one for each phase, so that the topological loss does not influence the momentum in the standard training. This 
technique is similar to the alternating minimization algorithm studied by [24] for separable convex problems.

An important decision is when to switch to the topological phase. We use a heuristic that depends on the validation 
loss. In each epoch, we first iterate over all batches and perform standard training using the first optimizer. Then, if the 
validation loss increases, compared to the previous epoch, by more than some threshold (a hyperparameter), we compute 
the ε-simplification g and take 5 to 10 steps with the second optimizer to minimize ‖ fθ − g‖2. We use the norms of the 
gradients of the ordinary training loss and of the topological loss, to set a learning rate for the latter that ensures that we 
update the model parameters θ by comparable amounts in both phases.

Choice of ε A key decision in implementing our method is how to choose ε, to decide which points to keep and which to 
remove in the persistence diagram. Earlier works [8,5] prescribe a fixed number of points to keep in a certain region of the 
persistence diagram. For instance, some of the losses in [5] penalize all but j of the most persistent points. We can optimize 
such a loss by setting ε = (p j + p j+1)/2, where pi is the persistence of each point, sorted in descending order.

Another alternative, used in topological data analysis to automatically distinguish between persistent and noisy points, is 
the largest-gap heuristic. To apply it, we find index j such that the difference p j − p j+1 is maximized.

Finally, the heuristic that we found most effective and use for all experiments in Section 6 is to use validation loss as 
our ε. Validation loss tells us how far we are from a function that gives perfect answers on the validation set. Using it as ε, 
we find the topologically simplest function g that is within the same distance from our model fθ .

Classification For regression, the network itself serves as a real-valued function amenable to topological analysis. Classi-
fication requires a little more work. We assume that the data has m classes and the network has m output channels, 
fθ : Rd → Rm , with the predicted class chosen as p = arg maxi fθ (x)[i]. We define the confidence function, φ : Rd → R, to 
measure how much higher the value in the predicted channel is compared to the second highest candidate:

φ(x) = fθ (x)[p] − max
i 
=p

fθ (x)[i].

When φ(x) is close to 0, the network is not confident whether to classify x as the top class p or the second-best guess. The 
zero set φ−1(0) is the decision boundary, by definition. By driving optimization towards the simplified version of φ, we can 
reduce overfitting.

Because generically φ(x) is never zero on an input point x ∈ X̂ , we need an extra step to capture the topology of the 
decision boundary. If two vertices u and v , connected by an edge in the k-NN graph, are assigned two different classes by 
4
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Fig. 2. Optimization of the values. (a) Original function. (b) Vineyard of simplification with PSO loss. (c) Function simplified with PSO loss. (d) Vineyard of 
simplification with diagram loss. (e) Function simplified with diagram loss.

Fig. 3. Confidence function on a real line. There are two classes, encoded in red and blue colors. The edges in black that correspond to the dashed parts 
of the continuous function are removed. After that, in this case there is only one small ‘bump’ that we want to remove during simplification. The desired 
effect of the PSO loss shown with arrows.

the network, then the decision boundary passes somewhere between them. In this case, we remove the edge (u, v) from 
the graph. This pruning results in multiple connected components, at least one per class. We compute the merge tree — 
forest in this case — of the confidence function on the pruned graph, with respect to the super-level sets, i.e., tracking 
persistence of the maxima. Because the confidence function is never negative, we restrict the infinite branches in the merge 
tree to die at 0. This obviates special treatment of separate connected components in the graph: if one of them produces a 
low-persistence merge tree, we simplify it by setting the values of all of its vertices to 0.

A schematic example is shown in Fig. 3. We assume that k = 2, so each point is connected to its two neighbors and the 
underlying graph is a line. There are 4 points of the blue class that correspond to a region of low confidence. If we remove 
the edges in black, then these 4 points are isolated and the merge tree has a connected component capturing these points. 
We want to make the network even less confident in its predictions in this region, and simplifying the confidence to 0
expresses exactly that.

4. Comparison with diagram simplification

Earlier work on applying topological regularization to neural networks [8,5] relied on backpropagation through per-
sistence diagrams. Let us re-state this approach in our notation. We build k-NN graph G and view the model fθ as a 
piecewise-linear function fθ : G →R, i.e., we evaluate fθ at each vertex x of G and extend it to the edges by linearity. Since 
we have a function on a 1-dimensional simplicial complex, we can compute its 0-dimensional persistence diagram using a 
lower-star filtration (sublevelset persistent homology of fθ ). Each point (bi, di) of the diagram records a component that is 
born at local minimum xi with fθ (xi) = bi and dies at saddle yi with fθ (yi) = di .

Definition 4.1. Given ε, the diagram loss is defined as

LDgm( f ) = 1

2

∑

|di−bi |<ε

(di − bi)
2 = 1

2

∑

|di−bi |<ε

( fθ (yi) − fθ (xi))
2,

where we sum over all points (bi, di) of the diagram with persistence less than ε.

If one adds a regularization term of the form λLDgm( f ), then one can back-propagate the gradient to the function values 
fθ (x), fθ (y) and then to the model parameters θ , i.e., the weights of the network.

Let us compare the (sub)gradients of the diagram loss and the PSO loss. For simplicity, we assume general position (all 
function values are distinct), so that both losses are differentiable, and we can talk about gradients. In terminology of [19], 
we assume that we are in the highest-dimensional stratum. First of all, ∂LDgm

∂x = 0 for every non-critical x ∈ G , while for 
the PSO loss the gradient is non-zero for all x that belong to branches with persistence less than ε. Furthermore, even 
for critical points, the components of the gradients are different for two reasons. First, the diagram loss pushes the point 
(bi, di) to its diagonal projection ((bi +di)/2, (bi +di)/2). The birth point should move up, and the death point should move 
5
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Fig. 4. Comparison of the gradients of the diagram and PSO losses. Left: A merge tree of a function with 3 minima. The merge tree has 3 branches, and ε
is such that the two shorter branches should be removed. Middle: Gradient of the diagram loss pushes critical points towards the midpoint of their branch. 
Right: Gradient of the PSO loss pushes all points of the outermost branch that should be simplified and all shorter branches that merge into it towards the 
saddle value.

Fig. 5. Optimization of the weights. (a) Vineyard of simplification with PSO loss. (b) Vineyard of simplification with diagram loss.

down, to meet in the middle. Our simplification algorithm lifts all points to the saddle value, thus pushing (bi , di) to the 
point (di, di). The death point does not move at all, and the birth point and all intermediate points are moved up. Secondly, 
consider a point (bi, di) that corresponds to a short branch that merges into another short branch (b j, d j), |d j − b j | < ε, 
which in turn merges into a branch with persistence greater than ε. The diagram loss will try to move f (xi) and f (yi)

towards the midpoint. The PSO loss will detect that it is not enough to eliminate the i-th branch alone, but the whole j-th 
branch also has to be destroyed, and it will send bi = f (xi) and di = f (yi) to d j = f (y j). See Fig. 4 for an illustration.

The first disadvantage of the diagram loss is that only critical points generate pairs in the persistence diagram. Ac-
cordingly, as explained in the previous paragraph, most input points are not used and receive no information during the 
backpropagation. To illustrate this, we take f : R2 → R to be the sum of 4 Gaussians and evaluate f on the uniform grid 
over unit square [0, 1] × [0, 1] with 10, 000 vertices. Fig. 2a illustrates the plot of f . We pick ε so that the two lower per-
sistence points in the diagram of f (corresponding to the two Gaussians with lower peaks) are simplified, and take 50 steps 
of gradient descent using the PSO loss and the diagram loss directly on values of f at each vertex. The simplified functions 
appear in Figs. 2c and 2e, respectively.

Figs. 2b and 2d show the vineyards of the two optimization processes. In both vineyards, we show the original persis-
tence values in black, the desired values in red, and the values at each step of the optimization in green. With PSO loss, 
this is an unconstrained convex problem, so the optimizer quickly eliminates the two noisy bumps of the function, while 
preserving its persistent part. In contrast, each step of the diagram loss changes values only at critical points, making the 
optimization process much slower — after 50 steps both bumps are still present.

Another significant advantage of the PSO loss is that it only requires computing the merge tree (to get the simplified 
function) once per epoch. On the other hand, the diagram loss requires recomputing the merge tree (to get a persistence 
diagram) after each step. This not only makes the process slower, but also introduces additional topological noise, evident 
in the vineyard. In experiments on real datasets, the diagram loss made topological phase 2–20 times longer than a phase 
with the PSO regularization, see Table 1 in Section 6.

Fig. 5 shows the effect of the two losses on a neural network. We train a fully connected network with 5 layers for 
100 epochs and then perform 30 steps of topological optimization. The key difference from the previous example is that 
we do not have direct control over function values, but only over the weights of the network. The diagram loss provides 
information only for the critical points of the function, and the optimizer ends up minimizing this loss by pushing the whole 
function towards a constant: in the vineyard on the right-hand side, all points, not just the points below ε, are moving to 
0. Since the PSO loss penalizes changes to the high-persistence parts of the function, its optimization does not suffer from 
the same problem, as the vineyard on the left-hand side shows.
6
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Fig. 6. (a) Input data: 1000 points sampled from three Gaussians, representing three distinct classes, with 20% of the labels randomly shuffled. (b) Labels 
predicted at epoch 500 without regularization. (c) Labels predicted at epoch 500 with PSO.

Fig. 7. (a) Training and validation loss, restricted to the later epochs when the network overfits the data. Simplification is applied after every epoch, following 
epoch 450, marked with a dashed line. (b) Vineyard of the confidence function during training.

It is not clear how to fix this overzealousness of the diagram loss. The main difficulty is that the critical vertices and 
their pairing change after each gradient descent step. A naive fix would be to add a term that pushes high-persistence 
points to ∞: −λ 

∑
(di−bi)>ε(bi − di)

2. We have tried this approach, but it did not perform well. Depending on weight λ, 
either the additional term had no influence at all, and the function was squashed to a constant; or it dominated, and the 
function exploded numerically.

A more principled solution would be to compute a matching between the persistence diagram after each step of the 
topological optimization and the target simplified diagram. The matching would translate into a loss that would simplify the 
diagram, while trying to preserve the high-persistence points. However, this approach has many drawbacks. The computation 
of the matching, even using the fast algorithms [16], is prohibitively expensive and would make this procedure completely 
impractical. The method itself, by construction, would only preserve the structure of the persistence diagram, not its values 
at individual vertices. Finally, changing the diagram loss function at each step of the gradient descent may have unexpected 
effects on the momentum.

5. Illustrative example

To illustrate how topological regularization using the PSO loss can reduce overfitting, we consider a simple three-class 
dataset, shown in Fig. 6a. It consists of points sampled from three Gaussians, 1,000 points from each, that represent three 
distinct classes. We randomly shuffle 20% of the labels to introduce class noise. We train a fully-connected feedforward 
neural network with 5 hidden layers of 100 nodes each for 500 epochs.

Fig. 7a illustrates the training and validation losses, and Fig. 7b shows the persistence vineyard of the confidence function 
for epochs 350 to 500. In the beginning of this range, the network has already overfit the labels. The growing validation 
loss confirms the overfitting, which is also evident in the vineyard, where the second and third highest persistence points, 
which represent the true classes in the data, are becoming indistinguishable from the noisy points.

Starting with epoch 450, we apply ten steps of topological simplification after every training epoch (i.e., we apply ten 
optimization steps to minimize the PSO loss). Because we expect each of the three classes to be a single cluster, we set ε to 
keep the three highest points in the persistence diagram. This defines a PSO loss that encourages removing maxima of the 
confidence function that do not correspond to the 3 predominant class clusters.

As Fig. 7a illustrates, after turning on simplification at epoch 450, the validation loss decreases by over 20%. Fig. 7b 
demonstrates the abundance of high persistence features prior to epoch 450. Most of these correspond to mountains in 
the confidence function around noisy mislabeled points. Turning on simplification at epoch 450 reduces the persistence of 
7
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Table 1
Timing of diagram loss and PSO loss, in seconds. Total column contains the running 
time of the topological regularization part in one phase (the first time regularization 
was applied). Loss computation column contains the total time spent computing the 
loss function, during the entire phase.

Total Loss computation Ratio Dgm/PSO

PSO Dgm PSO Dgm Total Loss only

Boston 0.074 0.140 0.010 0.100 1.896 9.665
Iran housing 0.066 0.094 0.007 0.061 1.426 8.174
Wine 0.129 0.305 0.023 0.252 2.362 10.938
Protein 3.701 9.511 0.771 8.299 2.570 10.762
Wireless 0.152 0.377 0.027 0.311 2.486 11.404
Wine (class) 0.163 0.409 0.031 0.341 2.512 11.158
Vertebral 0.063 0.106 0.006 0.065 1.696 10.130
SPECT 0.064 0.098 0.006 0.058 1.524 8.988
Wisconsin cancer 0.079 0.147 0.011 0.109 1.863 9.916
Semeion 0.156 0.334 0.024 0.261 2.144 11.030

Table 2
RMSD results on regression datasets comparing no regularization, �2 regularization of 
the weights, and topological simplification. 	 is the percentage of improvement from 
None to PSO.

Regularization Hyperparameters (best)

Datasets None �2 PSO 	 k t n σ

Wine 0.784 0.772 0.759 2.6% 15 0.001 6 0.001
Iran housing 0.122 0.113 0.102 16.7% 10 0.01 9 0.001
Boston 0.334 0.323 0.314 6.1% 20 0.001 9 0.001
Concrete 0.310 0.297 0.288 6.4% 15 0.01 3 0.001
CT slices 0.031 0.031 0.029 6.4% 60 0.0001 1 0.001
Protein 0.638 0.633 0.624 3.1% 20 0.001 6 0.001

these peaks which drives the network to match the class labels of the dominant class around the outliers. The effect can be 
clearly seen in Fig. 6c, which contains much fewer misclassified points than Fig. 6b, where no regularization was applied. 
Note that we consider the original labels (before random shuffling) to be the correct ones, and we use ‘misclassified’ with 
respect to them.

This toy example demonstrates how PSO simplification identifies regions of overfitting due to class noise and reduces the 
confidence function near these noisy labeled points, lowering the validation loss and increasing the accuracy of the model 
after overfitting has occurred.

6. Experiments

We study the performance of persistence-sensitive optimization on six regression problems and seven classification prob-
lems from the UCI repository [9]. To represent a variety of problem settings, the selected datasets vary in the number of 
features, sample size, and number of classes. We standardize the features by subtracting the mean and dividing by the 
standard deviation. For both regression and classification, we use a dense neural network with five hidden layers and 100 
hidden nodes per layer. We use the Adam optimizer and a learning rate of 0.001 across all experiments, including regular 
training and training with topological simplification.

Timing Table 1 lists the time spent in the topological regularization phase, either using our PSO method or the diagram 
loss. The times were measured during the first regularization phase in any given experiment, so that identical networks 
are used as input in both cases. Each method takes 10 steps. Besides listing the total time spent in the phase (including 
back-propagating weights through the network and taking steps with the optimizer), the table also breaks out the time 
spent only computing the loss. Because diagram loss has to be recomputed after every step, whereas PSO computes the 
diagram only once, this part of the computation is usually 10 times faster with PSO. The speed-up in total time is less 
dramatic — between 1.4 and 2.5 times — because the data sets are small, and persistence computation is much faster than 
back-propagation and weight updates.

Hyperparameters We compare performance of the networks trained (1) without regularization, (2) with �2 regularization, 
(3) with topological regularization. For all experiments, training with and without regularization were run for the same 
number of total epochs. For the �2 regularization, the square of the weights of the network is added to the loss, scaled by 
a factor of λ, which we choose by sweeping through a logarithmically spaced grid from [10−5, 101]. We report the best 
performance across all λs for each dataset. For each dataset, we run all the models at least five times with different preset 
random seeds and average over all the trials.
8
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Table 3
Cross-entropy loss and accuracy results on classification datasets comparing no regular-
ization, �2 regularization of the weights, and topological simplification. 	 is the percent-
age of improvement from None to PSO.

Crossentropy Accuracy

Regularization Regularization

Datasets None �2 PSO 	 None �2 PSO 	

W. cancer 0.133 0.083 0.089 30.8% 0.969 0.983 0.990 2.1%
Wine 0.971 0.959 0.929 4.1% 0.592 0.600 0.652 10.2%
Semeion 0.481 0.478 0.381 20.8% 0.868 0.880 0.902 3.4%
Vertebral 0.393 0.381 0.343 12.8% 0.819 0.839 0.841 2.4%
Wireless 0.070 0.061 0.060 14.3% 0.970 0.981 0.982 1.1%
SPECT 0.352 0.341 0.334 5.7% 0.801 0.828 0.803 0%
Letter 0.272 0.259 0.232 14.8% 0.917 0.919 0.933 1.1%

Table 4
Hyperparameter values for the best model.

Hyperparameters (best)

Datasets k t n σ

Wisconsin cancer 15 0.0001 3 0.2
Wine 15 0.0001 0 0.001
Semeion 20 0.0001 9 0.2
Vertebral 15 0.0001 9 0.1
Wireless 25 0.0001 6 0.2
SPECT 10 0.0001 15 0.01
Letter recognition 20 0.01 3 0.2

As described in Section 3, we set a number of hyperparameters during the topological simplification:

• topological simplification is applied when validation loss increases by more than t;
• k determines the number of neighbors in the k-NN graph used to approximate the domain of the function;
• n is the number of additional points we sample, for each input point, before building the k-NN graph;
• the points are drawn from a Gaussian with variance σ , ranging from 0.001 to 0.2.

In appendix we list the hyperparameter ranges that were swept during the experiments. We always set ε to the validation 
loss.

Regression We evaluate the performance of topological regularization on six regression datasets. They vary in size from 
hundreds (Iran housing, Boston) to thousands (Wine, Concrete), to tens of thousands (CT slices, Protein) data points. For 
the largest dataset, CT slices, we project the data onto the first ten principal components before computing the k-NN 
graph. We use a 56%-19%-25% training-validation-test split, i.e., first applying a 75%-25% training-test split, and then further 
splitting the training set 75%-25% into a validation set. We evaluate the quality of the prediction using the root-mean-
square-deviation, 

√∑
( ŷi − yi)

2/n.
Table 2 presents the results of our regression experiments. Overall, topological simplification reduces RMSD across all 

the datasets by an average of 6.9%. Sampling each point multiple times with a small amount of perturbation improves 
performance. By applying simplification when validation loss increases by more than threshold t , we reduce overfitting and 
the resulting error. We also see that across the λ hyperparameter swept for �2 regularization, the performance is always 
worse than with topological simplification. We note that our method is fast enough to be used on very large datasets (we 
give two examples with 40,000+ points, but that’s by no means the limit); previous approaches to topological regularization 
(using a form of diagram loss) [8] were limited to much smaller datasets (hundreds to a thousand points).

Classification We also evaluate our method on seven classification datasets. Each one has from two to 26 classes. Similar 
to the regression datasets, each has hundreds (Wisconsin cancer, Vertebral, SPECT) to thousands (Wine, Semeion, Wireless) 
to tens of thousands (Letter recognition) data points. We use the same 56%-19%-25% training-validation-test split. When 
topological simplification is applied, we set ε to the cross-entropy loss and simplify the confidence function φ, described in 
Section 3. We evaluate the quality of our predictions by computing the cross-entropy (X-E) loss and accuracy.

Table 3 shows the results of our classification experiments. The X-E loss decreases when we apply topological regu-
larization except for the Wisconsin cancer dataset, while accuracy increases for all the datasets, except the SPECT dataset 
(the smallest dataset in size). Overall, X-E loss decreases by an average of 14.8% and accuracy increases by an average of 
2.9% across all datasets. Table 4 shows the hyperparameters for the model with the lowest X-E loss. In contrast with re-
gression, on average, more aggressive perturbation of the sampled points results in better performance. The best model 
9
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Fig. 8. (a) Training and validation loss curves for an experiment on the wine regression dataset. Performance is best at epoch 44, and simplification is 
applied only once, after epoch 43. (b) Vineyard over all epochs.

performance across all the datasets, except letter recognition, occurs for validation loss threshold t equal to 0.0001, indicat-
ing that applying simplification as soon as validation loss increases, i.e., as soon as the model shows any sign of overfitting, 
helps regularize the training. Topological simplification is slightly less accurate than �2 regularization on the SPECT dataset, 
equally accurate on the vertebral dataset, the same in terms of X-E loss on the wireless dataset, and better on all other 
datasets.

Loss and vineyard To better understand topological simplification, we examine the training and validation loss curves as well 
as the vineyards for regression experiments on the Wine dataset. As Fig. 8 illustrates, the network quickly starts to overfit 
— without simplification, within 10–15 epochs — and the validation loss rises. Applying simplification quickly reduces the 
validation loss, seemingly pushing the system into another region of the loss landscape. This is further seen in the vineyard, 
where the sharp decrease in validation loss matches with the simplification of the persistence diagram.

7. Conclusion

We presented a topological regularization method that uses persistent homology, merge trees, and persistence-sensitive 
simplification to minimize the number of noisy extrema in a machine learning model. Unlike previous such methods, our 
approach is faster — requiring to compute the topological descriptor only once per simplification phase — as well as more 
robust and predictable in its effects on the model. The key distinction of the method is its ability to prescribe gradients 
on the entire domain rather than only on the critical points. We illustrated the benefits of its use in experiments with a 
number of well-known data sets.

Our work has a larger implication for the use of topological methods in machine learning. The realization that one 
can back-propagate gradients through a persistence diagram has generated considerable interest in the community, with a 
number of recent works [8,5,18,14,7] exploring this idea. Our results suggest that it may be better to not treat persistence 
as a black box. Rather, it is a rich language that allows one to precisely express topological constraints and priors to add to a 
problem. The actual enforcement of these constraints can be accomplished via different methods, back-propagation through 
the persistence diagram being but one of them.

Building on prior work in computational topology, we described only how to simplify extrema, i.e., 0-dimensional persis-
tence diagrams. It is undoubtedly useful to incorporate higher-dimensional topological constraints, such as loops or voids in 
the data, into optimization. A key research direction is how to adapt these ideas to higher dimensional persistent homology. 
Doing so efficiently may require imposing constraints not only on the points in the persistence diagrams, but on the entire 
representative cycles implied by those points. This direction is explored in detail in the recent preprint [21].
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Appendix A. Hyperparameter ranges for experiments

The computation relies on the following hyperparameters:

• topological simplification is applied when validation loss increases by more than t;
• k determines the number of neighbors in the k-NN graph used to approximate the domain of the function;
• n is the number of additional points we sample, for each input point, before building the k-NN graph;
• the points are drawn from a Gaussian with variance σ .

The tables list the values of the hyperparameters we tried for each dataset. In the main text, we report the model that has 
the best performance, highlighted in bold here.

A.1. Regression

See Table A.5.
Table A.5
Hyperparameter ranges for regression datasets.

Datasets k t n σ

Wine 10, 15, 20 0.001, 0.01, 0.05, 0.1, 0.5 0, 3, 6, 9,12 0.001, 0.01, 0.1. 0.2
Iran housing 10, 15, 20 0.001, 0.01, 0.05, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Boston 10, 15, 20 0.001, 0.01, 0.05, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Concrete 10, 15, 20 0.001, 0.01, 0.05, 0.1, 0.5 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
CT slices 20, 40, 60, 80 0.0001, 0.001 0, 1 0.001, 0.01, 0.1, 0.2
Protein 20, 40, 60, 80 0.001, 0.01, 0.1 0, 3, 6 0.001, 0.01, 0.1, 0.2

A.2. Classification

See Table A.6.
Table A.6
Hyperparameter ranges for classification datasets.

Datasets k t n σ

W. cancer 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9,12 0.001, 0.01, 0.1. 0.2
Wine 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Semeion 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Vertebral 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Wireless 10, 15, 20, 25 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
SPECT 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12, 15 0.001, 0.01, 0.1, 0.2
Letter 10, 20, 30, 40, 50 0.0001, 0.001, 0.01 0, 3, 6, 9, 12, 15 0.001, 0.01, 0.1, 0.2
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