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Abstract

We review recent developments of the use of topology in neuroscience.
From grid cells and head direction cells to the geometry of olfactory space,
modern applied topology methods such as persistent homology are increas-
ingly being used to study neural circuits and perception. In addition to
outlining the big picture and reviewing various applications of topological
data analysis (TDA) to neuroscience, we take a deep dive into the basic ho-
mology computation to make the underlying mathematics more accessible
to neuroscientists. A discussion of practical considerations and pointers to
TDA software are also included.
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INTRODUCTION

A Torus in the Rat’s Brain

In February 2021, a paper was posted on bioRxiv titled “Toroidal Topology of Population Activity
in Grid Cells” (Gardner et al. 2021). It was a tour de force collaboration between a Nobel Prize—
winning lab, a couple of computational neuroscientists, and three mathematicians. The results
were spectacular, if not entirely unexpected. Using Neuropixels silicon probes, the Moser lab had
recorded more than 7,500 single units in the medial entorhinal cortex of freely moving rats. The
recordings were dense enough to identify six grid cell modules across four recording sessions. And
once they limited their analyses to “pure” grid cells, clustered by module, they were able to see
what many of us were expecting them to see: a torus in the rat’s brain. Or, to be more precise,
several tori—one per grid cell module.

What does this mean? Here’s the basic idea. Grid cells are neurons that encode an animal’s posi-
tion in space via overlapping grid fields. These grid fields are similar to place fields for hippocampal
place cells with one important difference: they each have multiple peaks that are organized in a
hexagonal grid. Two grid cells belong to the same module if their grid fields have the same scaling
and orientation (see Figure 1). Within each module, grid fields differ by their spatial phase. One
grid field has the peak in the center of each hexagon, another in the upper right corner, and so
on, and collectively they fully cover the animal’s environment. In this way, the grid fields within
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Figure 1

Grid fields from a single grid cell module. (Top, left) Grid fields from a single module have the same scaling and orientation. Grid fields
for four neurons are shown (one per color); each field has the periodic pattern of a hexagonal lattice. The grid field pattern repeats in a
hexagonal tiling of space. A single hexagon forms a “fundamental domain” represented by the grid cell activity. (Zop, right) Identifying
one pair of opposite sides of the hexagon yields a cylinder, and identifying the other sides results in a twisted torus. An example
trajectory (blue) that crosses from one tile to another results in a repetition of the same grid cell activity at the beginning and end.
(Bottom) Same as above, but for a module with a different orientation and a smaller scaling of the grid fields, resulting in a smaller torus.
The same trajectory that looped back to a similar position on the module 1 torus does not show repeating population activity in
module 2.

a module correspond to the same hexagonal tiling of space. [These details are explained in many
places by now; a good place to start is Edvard Moser’s Nobel Prize lecture (Moser 2014).] But the
position information from the grid cell activity of neurons in a single module only nails down the
animal’s location relative to the hexagon.! In other words, it can tell you that the animal is located
in the lower left corner of a hexagonal tile, but not which tile the animal is in! Moreover, because
of the repeating arrangement of hexagonal tiles, positions on opposite sides along the boundary
of the hexagon get identified—they give rise to the same grid cell activity. The resulting shape,
topologically, is a twisted torus. You can verify this yourself: imagine a large rubbery sheet in the
form of a hexagon, and label the sides clockwise as a, b, c, a, b, ¢ (see Figure 1). Glue the top
and bottom “a” sides together, and you get a cylinder where each boundary circle consists of b
and c sides. Now twist the cylinder, as if you are opening a can of biscuits, and glue the two ends
together so that you match b to b and ¢ to c. Voila: this is your torus.

But this torus is formed from a hexagonal tile in two-dimensional space. What does it mean
to see the torus “in the brain,” arising from the population activity of grid cells? If you collect the
activity of » grid cells from a single module into population vectors that evolve over time, they
form trajectories in an n#-dimensional Euclidean space. However, as the animal moves through
space from one tile to another, the same (or very similar) population vectors can get repeated, as
nearby positions on the hexagon are repeatedly visited, albeit on far-away tiles. The trajectories

'Note that a parallelogram can also be used as the fundamental domain; in this case, the torus emerges when
opposite sides are identified. See Langdon et al. (2023) for a nice visualization.
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thus loop back on themselves, and the population activity ends up taking the shape of points
sampled from a two-dimensional torus embedded in the #-dimensional activity space.

This idea, that data from a covering of space by local “fields” can reflect the underlying topology
of that space, is the neuroscience instantiation of the famous Nerve theorem from algebraic topology
(Curto et al. 2013, Schenck 2022). In the case of place cells in the hippocampus, the represented
space is the animal’s environment (Curto & Itskov 2008, Curto 2017). In the case of a module of
grid cells, the represented space is a hexagonal tile with opposite sides identified—topologically a
torus (Curto 2017). These are the tori that were observed by Gardner et al. (2021, 2022) using an
important method of topological data analysis (TDA) called persistent homology.

Roughly speaking, persistent homology is a data analysis method that was designed to analyze
point cloud data (e.g., a bunch of points in R”) by estimating topological features of the underlying
manifold from which the points appear to have been sampled (Niyogi et al. 2008, Kang etal. 2021).
In the case of grid cell activity from a single module, the population vectors trace out points on a
torus in R”, where # is the number of grid cells in the population. In the case of population activity
representing a circular variable, such as heading direction, we expect the population vectors that
appear to be sampled from a circle in R” (Kim et al. 2017, Chaudhuri et al. 2019, Petrucco et al.
2023). But this is just one of the ways topology appears in neuroscience.

Roadmap

The rest of this article is organized as follows. First, we give an overview of some important ex-
amples where topology has played a role in studying neural circuits and the structure of neural
coding. Back in 2017, when topology was still virtually unknown in neuroscience, the first author
attempted to give a fairly comprehensive review of all the work that had been done in this area
(Curto 2017). Eight years later, a comprehensive review is impossible. Nevertheless, we flesh out
some examples that reflect the variety of ways in which these techniques have been used and have
been influential in spurring future research.

Next, we take a bit of a deep dive into the core mathematical ideas underlying algebraic topol-
ogy, persistent homology, and so on and explain the basic homology computation by working outa
detailed example. The philosophy behind including this example comes from the belief that many
neuroscientists (and perhaps all computational neuroscientists) already have the necessary back-
ground in linear algebra to be able to understand the essence of what homology is computing, and
that having a more concrete understanding of the algebraic topology will enable better and more
honest interpretation of topological analyses. We then give an intuitive explanation of how persis-
tent homology works and describe the various outputs of persistent homology software: barcodes,
persistence diagrams, and Betti curves.

Finally, we come back to neuroscience applications and explain how barcodes and Betti curves
have been used in practice to detect topological and geometric structure in the neural activity of
grid cells, head direction cells, place cells, and in olfactory space.

TOPOLOGY IN NEUROSCIENCE: WHAT, WHEN, WHERE, AND WHY?

In a soundbite, topology is the study of shape without angles or distances—a kind of geometry that
is agnostic to the choice of metric. The mathematical field of topology makes these ideas rigorous
and is still an active area of research motivated by many open questions. Most topologists use tools
from algebraic topology, a theory that defines and studies topological invariants of various spaces
using techniques from homological algebra. If you have heard of Betti numbers, homology groups,
homotopy groups, and the fundamental group—these are all basic invariants that are computed
in algebraic topology (Munkres 2000, Hatcher 2002).

Curto o Sanderson



TDA can be thought of as an applied math spin-off from algebraic topology. At its origin, the
field was motivated by two main questions: (#) how can we make large-scale homology computa-
tions on a computer more efficient, and () how do we associate topological features to point cloud
data? In other words, how can we detect whether a set of points, such as population vectors in R”,
have an underlying shape—as if they had been sampled from a torus or a sphere? These questions
were not at all addressed in traditional algebraic topology, but several topologists got to work
developing the new theory underlying TDA. This work began more than 25 years ago (Robins
et al. 1998; Robins 1999, 2000, 2002; Edelsbrunner et al. 2002; Kacynski et al. 2004; Zomorodian
& Carlsson 2005; Edelsbrunner & Harer 2009; Zomorodian 2009), and much progress has been
made (Edelsbrunner & Morozov 2013, Ghrist 2014, Turner et al. 2014, Zomorodian 2014, Otter
et al. 2017, Boissonnat et al. 2018, Kanari et al. 2020, Carlsson & Vejdemo-Johansson 2022, Dey
& Wang 2022, Schenck 2022, Kahle et al. 2023, Curry et al. 2024). The tools of TDA are now
well-developed and readily available for the use of any computational scientist (see the Software
section).

Within neuroscience, the first uses of these modern topological methods appeared a little over
15 years ago. One of the very first papers using these techniques involved the collaboration of a
neuroscientist, Dario Ringach, and a topologist, Gunnar Carlsson—one of the original founders
of TDA. Their paper, “Topological Analysis of Population Activity in Visual Cortex” (Singh et al.
2008), used persistent homology to detect interesting topological structure in both spontaneous
and stimulus-evoked activity in primary visual cortex (V1). That same year, the first author, to-
gether with Vladimir Itskov, published a paper showing that the shape of an animal’s environment
could be inferred via topological analysis of hippocampal place cell activity—without knowledge
of the actual place fields (Curto & Itskov 2008). Very similar observations were being made at
the time by Yuri Dabaghian (Dabaghian et al. 2012, 2014) in the lab of Loren Frank. This early
work on applications of topology in neuroscience attracted considerable interest from within the
math community and was reviewed by Ghrist (2007), Curto (2017), and Levi (2017). On the
neuroscience side, however, these ideas were initially somewhat slow to catch on, until recently.

There are at least three ways in which ideas and structures from topology may be useful for
understanding the brain. These are summarized in Figure 2a4. First, topological methods can be
used to understand and classify features of the physical brain. This can include neuron morphology
(Kanari etal.2017,2019,2022; Li et al. 2017), the physical structure of neural networks (Kim et al.
2017), or even the structure of nonneuronal networks such as the brain’s vasculature controlling
blood flow (Bendich et al. 2016, Haft-Javaherian et al. 2020, Yao et al. 2024).

Second, neural activity may have interesting topology, as we saw in the case of grid cells. Such
structure has also been observed in systems where the underlying circuits are believed to have
a ring-like structure (Kim et al. 2017, Chaudhuri et al. 2019, Petrucco et al. 2023). In addition
to position coding and vision systems, topological methods have also been used to analyze spike
train coactivity in songbird auditory cortex (Theilman et al. 2021), to study auditory coding more
generally (Reyes 2021, Tudoras & Reyes 2021), and to study the flow of neural activity through a
cortical circuit (Riemann et al. 2017, Bardin et al. 2019). Furthermore, topological methods have
been used fruitfully to study the structure of neural activity in human functional MRI (fMRI)
(Giusti et al. 2016; Sizemore et al. 2016, 2018; Anderson et al. 2018; Catanzaro et al. 2024), and
topological invariants for fMRI have been shown to have diagnostic value (Stolz et al. 2021).

Third, the represented stimulus spaces may have interesting topology. For example, the head di-
rection system represents a circular variable tracking head direction. Similarly, orientation-tuned
neurons in V1 represent angles on a circle. We would thus expect population activity vectors in
either of these systems to appear as if they were sampled from a circle in R”. But the structure of
stimulus spaces can also be inferred directly, using perceptual measures (Waraich & Victor 2024)
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The big picture. () Three ways in which topology can provide insights into neuroscience. (5) Neural activity data are amenable to
topological analyses in two ways: from the columns, one gets a distance matrix; from the rows, a correlation matrix. Both are symmetric
matrices that can be analyzed using persistent homology. Several images in panel # adapted from Kanari et al. (2017) (CC BY 4.0),
Noorman et al. (2024) (CC BY 4.0), Petrucco et al. (2023) (CC BY 4.0), Gardner et al. (2022) (CC BY 4.0), and Servier Medical Art
(https://smart.servier.com/smart_image/brain-circulation/) (CC BY 4.0).
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or other measures of stimulus distance/similarity (Zhou et al. 2018, Chen et al. 2024), and the
underlying geometry of such spaces may be hyperbolic rather than Euclidean (Zhou et al. 2018,
Sharpee 2019, Zhang et al. 2023, Waraich & Victor 2024).

Going back to the case of neural activity, there are two important (and in some sense, dual)
perspectives that can be used for analyzing neural activity through a topological lens. They have to
do with focusing on the columns versus rows of a neural activity matrix (Figure 24, left). Consider
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an N x M matrix, where N is the number of neurons and M is the number of time bins (or stimuli).
Each column of this matrix, 7;, represents a population vector, and the collection of population
vectors 71,. .., 7ar is a set of point cloud data in RV (Figure 2b, middle). From these data one
can then compute pairwise distances, yielding a distance matrix with entries D;; = ||7; — #;||. Such
a distance matrix can then be the input to a persistent homology computation that is used to
analyze the shape of the point cloud. This is the perspective that has been used to see a torus in the
population activity of a grid cell module, albeit with some important preprocessing steps (Gardner
et al. 2022). It is also the perspective underlying the earlier V1 analysis by Singh et al. (2008).

Instead of focusing on the columns, however, one can also look at the rows of a neural activity
matrix. Each row, y;, collects the response of neuron % across time and/or stimulus presentations.
One may use these row vectors to compute an N x N correlation matrix (Figure 25, right), whose
entries Cy, represent the correlation between neurons % and £. Although such a matrix is not
a distance matrix, it turns out that it, too, can be taken as the input to a persistent homology
computation. In fact, TDA on correlation or similarity matrices has proven to be quite fruitful,
yielding interesting results about the geometry of hippocampal place cell coding (Giusti et al.
2015, Zhang et al. 2023) and olfactory space (Zhou et al. 2018). The duality suggested by looking
at information in the columns versus rows of the neural activity matrix echoes a deep duality in
topology known as Dowker’s theorem (Dowker 1952; Chowdhury & Mémoli 2018; Wu & Itskov
2022; Vaupel & Dunn 2023; Yoon et al. 2023, 2024).

Finally, independent of the topological interpretation, persistent homology also provides a
novel method for generating matrix invariants that may be more appropriate than traditional
spectral techniques for neural data analysis. More on that later.

TOPOLOGY OF GRAPHS AND SIMPLICIAL COMPLEXES

In all of the above examples, from grid cells to bird song, the basic topological tools that were
used involve persistent homology and the underlying combinatorial objects: graphs, cliques, and
simplicial complexes. In this section, we take a deep dive into how these objects come together in
the basic homology computation. Providing mathematical details requires some standard notation
and terminology that may be unfamiliar to neuroscientists; for completeness, we include a table
of notation and a glossary of terminology at the end of this article (see the Appendix).

Before we get into specific topological invariants, like homology groups, it is important to un-
derstand what topologists mean when they say that two spaces are topologically “the same.” There
are some technical definitions here, but we illustrate what they mean with some easy examples.
Strictly speaking, we can only say that two spaces are topologically equivalent if they are homeo-
morphic. That is, X = V'if there is a continuous map f: X — ¥ that is a bijection, and for which f~!
is also continuous. Such a map is called a homeomorphism. This definition captures that idea that
two spaces should be considered topologically equivalent if you can deform one into the other
by stretching or shrinking different regions of the space in a continuous and invertible manner,
without closing or creating any holes. It is the strongest sense of topological equivalence.

On the other hand, there is also the weaker notion of homotopy equivalence. Two topological
spaces X and Y are bomotopy equivalent if there exist continuous maps f: X - Yand g: V' - X
such that g o fis homotopic to the identity map idy and fo g is homotopic to the identity map
idy (see the Appendix). In other words, you can continuously deform X into ¥ by operations that
are allowed to expand or contract parts of the space without creating (or destroying) any new
connected components or holes, but the map fneed not be invertible. For example, consider the
cylinder and the circle in Figure 34. There is a noninvertible projection map that sends each
point on the cylinder to the corresponding point below it on the bottom circle. If the cylinder is
X ={(x,y,2) e R’ | 2? +* = 1,2 € [0,2]} and thecircle is ¥ = {(x,y) € R? | 2> + > = 1}, thena
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a b

_ 24 )

Homotopy equivalent versus homeomorphic. (#) A cylinder and a circle are homotopy equivalent spaces, but
they are not homeomorphic. (#) A cone is homotopy equivalent to a point, while gluing two cones together
along their circular boundary creates a space homeomorphic to a sphere. (c) All trees are homotopy
equivalent to each other. However, the tree on the left is not homeomorphic to the tree on the right (e.g., by
removing a single point one can disconnect the tree on the right into four components; this is not possible
for the tree on the left). All the standard invariants from algebraic topology, such as homology groups,
cannot detect the difference between homotopy equivalent spaces that are not homeomorphic.

Figure 3

homotopy equivalence is given by the functions fand g where f: X — ¥ maps (x, y, 2) — (x, y),
and g: ¥'— X maps (x,y) — (x,y, 0). Notice that f o g : ¥’ — Y'sends (x, y) = (x,),50 f og = idy;
in particular, f o g is homotopic to idy. On the other hand, g o f: X — X sends (x, y, 2) = (x,y, 0)
and is thus a noninvertible projection not equal to idy. However, the family of continuous maps
b, : X — X, where (x,, 2) = (x, 9,2 — tz), connects by = g o fto by = idy in a continuous manner,
showing that g o fis homotopic to idx (see the Appendix). We can conclude that the cylinder and
the circle are homotopy equivalent. They are not, however, homeomorphic.

Homotopy equivalence is an important notion in topology because the vast majority of com-
mon topological invariants, such as Betti numbers and homology groups, are invariant under
homotopy equivalence. These invariants cannot tell apart X and Y if they are homotopy equiv-
alent, even if they have different dimensions! In particular, they cannot distinguish between the
cylinder and the circle in Figure 34. On the other hand, they can distinguish between the cone
and the double-cone in Figure 34, as they are not homotopy equivalent (the double-cone has a
two-dimensional cavity that the cone does not).

Do Graphs Have Interesting Topology Even if They Are Trees?

A tree is a graph with no cycles, and it is common to hear people say “trees have trivial topology.”
What is meant by this is that a tree is homotopy equivalent to a single point (also referred to as
contractible). This means that traditional homological invariants cannot distinguish between any
two trees (Figure 3c¢).

But trees are not actually topologically equivalent to points or balls. Thinking of a tree as a
one-dimensional space, it is clear that the removal of a single point can disconnect the tree into
two or more components. This is not true for a point or ball. Moreover, pairs of trees are seldom
homeomorphic to each other. For example, the two trees in Figure 3¢ are not homeomorphic:
the one on the right can be disconnected into four components by removing a single point (the
vertex of degree 4). This is not possible for the tree on the left, an indication that there can be no
homeomorphism between the two trees. On the other hand, two trees with the same combinatorial
pattern of vertices and edges are topologically identical (i.e., homeomorphic), no matter how long
the edges are or how the vertices are positioned in space.

While traditional homological invariants are too weak to distinguish between trees (they are
all homotopy equivalent), with the advent of persistent homology there are additional topolog-
ical invariants to consider. And these invariants do capture interesting structure about trees and
how they are embedded in space (Turner et al. 2014). This makes trees surprisingly interesting
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to analyze using modern topological methods. Such trees may reflect the structure of individ-
ual neurons, temporal branching processes, or vasculature in the brain (Kanari et al. 2017, 2019;
Haft-Javaherian et al. 2020; Yao et al. 2024). On the neural coding side, trees provide models of
hierarchical structures from spatial and sensory representations (Zhang et al. 2023, Waraich &
Victor 2024).

The more salient aspects of topology, however, emerge when considering spaces that are
more complex than graphs or trees. Next, we discuss simplicial complexes and segue into the
basic homology computation underlying the standard homological invariants, as well as persistent
homology.

Simplicial Complexes

A simplicial complex A is a generalization of a graph, composed of simplices. Depending on the
dimension, a simplex may be a vertex, an edge, a triangle, a tetrahedron, or a higher-dimensional
analog. Geometrically, one may picture a d-dimensional simplex as the convex hull of d + 1 points
in general position in a Euclidean space, R?. Combinatorially, simplices are represented by single
vertices, pairs of vertices, triples of vertices, quadruples of vertices, and so on (see Figure 4a).
In the same way, an undirected graph G is typically given as a collection of vertices and pairs of
vertices (the edges). The defining property that makes a simplicial complex special (as compared
to, say, a hypergraph) is that the collection of simplices must be closed under subsets (see the
Appendix). In other words, if 0 € Aand T C o, then 7 € A.

Simplicial complexes can also be viewed as topological spaces and are the basis for what is
arguably the simplest theory of homological invariants: simplicial homology. If one can model a
topological space via a simplicial complex, the homology computations become a straightforward
matter of linear algebra. (If you have ever seen a picture of the triangulation of a surface, this is
precisely a model of the surface as a two-dimensional simplicial complex whose simplices consist
of vertices, edges, and triangles.) In the neuroscience setting, there are various ways to turn data

a Simplices b Simplicial complex A
G Gl
a><°Q\ (;6‘@ g\@Q\
N ‘ v °>' .
%,c,\ A={1,2, 3 4,5,6,7,

12,15, 23, 25, 34,45, 67,125}

C Boundary maps

1234567 9, 9 9
9o=[0000000] C,—Ci— Co—0

125 12 15 23 25 34 45 67 01°0,=0 0p°0d;=
12[1 1Mf-1-10 0 0 0 0
151 2[1 0 -1-10 0 0 2 2 5
2|0 300 01 0-10 0 9, 1/ 5,

dy= 251 di=4/0 0 0 0 1 -1 0 1 e + 1530

34| 0 5001 0101 0 1'\
45(0 6/0 0 0 0 0 0 -1 - 5
67,0 700 0 0 0 0 0 1 5

Figure 4

The basic homology computation. (#) Simplices in various dimensions form the building blocks for
simplicial complexes. () A simplicial complex composed of one 2-simplex, seven 1-simplices, and seven
0-simplices. (¢) Boundary maps 0 connect linear combinations of simplices (chains) in dimension # to their
boundaries in dimension & — 1.
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into simplicial complexes. Finding a good simplicial complex, or a good family of them, is the first
step toward computing meaningful topological invariants.

More on that later. But first, what exactly is homology? And how does one compute it for a
simplicial complex?

The Basic Homology Computation, in the Simplest Setting

You may have heard the idea that topology is about studying topological features such as “holes”
in a geometric object, while ignoring angles, distances, and other geometric details. If X is a topo-
logical space, the Oth homology group Hy(X) captures the connected components of X; the 1st
homology group H;(X) encodes one-dimensional holes, like an empty region bounded by a circle;
the 2nd homology group H,(X) encodes two-dimensional holes, like the hollow inside of a sphere;
and so on. However, these “holes” are represented carefully, identifying homological cycles that
are considered equivalent. This is the part that does not feel very transparent. The best way to
demystify what exactly is being computed by simplicial homology is to do an example. The only
prerequisite needed to follow these computations is basic linear algebra.

What follows is a bit of a deep dive into an explicit example of a homology computation, writing
down the boundary maps and all. The reader who already knows basic algebraic topology can skip
it, as can the reader who is not yet interested in all the mathematical details.

So, let us work through an example in detail. Consider the simplicial complex A given in
Figure 4b. It consists of seven vertices, seven edges, and one triangle. Combinatorially, it is the
following collection of subsets of the vertex set {1,..., 7}

A={1,2,3,4,5,6,7,12,15,23,25,34,45,67,125},

where we are slightly abusing notation and writing things like “45” and “125” to denote the subsets
{4, 5} and {1, 2, 5}. Note that because A is closed under subsets, it can also be characterized by its
maximal simplices: 23, 34, 45, 67, and 125. Adding in all subsets of these simplices, such as the
edges 12, 15, and 25, as well as the vertices 1,.. ., 7, recovers the full simplicial complex A.

In order to compute the homology groups of A, the first thing we must do is create vector
spaces Cy, Cy, and C; that encode linear combinations of simplices in each dimension. What we
are doing here is very simple: to each simplex o € A, we associate a basis vector ¢,, and then
group these into different vector spaces according to the simplex dimension. The elements of the
vector space Cy are thus linear combinations of the &-simplices, with coefficients in a prescribed
field k.> You can think of k = R for purposes of this example.} (We avoid using rings like Z for
the coefficients so that the C} are vector spaces.) Specifically,

7
C(): {ZCI‘E,' | ¢ € k},
i=1

G

{Zcoeg |, e kand o € {12,15,23,25,34,45,67} {,

G = {51256’125 | c125 € k},

2Unfortunately, but unavoidably, we have used the word “field” in three different ways so far. In neuroscience,
there is the “field” of receptive fields, as in grid fields and place fields. In mathematics, a number system like R
with additive and multiplicative inverses is called a field. And, finally, there is “field” as in an area of scientific
research. We have not discussed corn fields, though.

31n software, the tendency is to use finite fields such as Z/pZ. However, this can yield a subtle phenomenon
called rorsion that does not happen over R and which is beyond the scope of this review.
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The vectors in each of these vector spaces are called chains: 0-chains in Cy, 1-chains in C, and
2-chains in C;. The coefficients, ¢,, are simply numbers in the field k, just as with any other vector
space over k.

Another important convention concerns the orientations of the simplices. Each simplex, rep-
resented by e,, has two possible orientations: positive or negative. We will assume the positive
orientation is the one where the vertices are given in increasing numerical order, or with any even
permutation of this order (see the Appendix). Thus, e25 = e251 = es1 all represent the positively
oriented 125 simplex, while e;15 = 15, = 521 represent the negatively oriented 125 simplex; and
we declare ;15 = —ey35 in the vector space. In our definitions of Cy, Cy, and C; above, we have cho-
sen the positively oriented representatives as the basis vectors. However, the negatively oriented
elements are in there, too, as e; = —e;» € C; and e135 = —e215 € €5, and so on.

What does a k-chain with multiple terms represent? In general, it is just a formal linear com-
bination of k-simplices, and that is it. However, some of these linear combinations are special.
For example, the 1-chain e;;3 + e34 + e45 — €25 represents a one-dimensional cycle in the graph of
vertices and edges of A (the “—” sign on e;5 arises because going around the cycle actually yields
€23 + €34 + €45 + €52, and es; = —eys). Similarly, the chain e, + e;5 — e15 yields another cycle. In the
context of A, however, these cycles are fundamentally different: the first represents a “hole” in the
simplicial complex, while the second one does not because there is a triangle that has “filled in”
this hole. Homology is a method that uses linear algebra to algorithmically detect this difference.
Here is how it works.

First, we need boundary maps between the vectors spaces {C}. These are linear transformations,
0; : Cp — Cy_y, that take each k-chain to a (k — 1)-chain. Since 0, is a linear transformation, we
can define it by specifying where it sends each basis element. The general rule for a basis vector
e, € C, where 0 = {vy,..., v41} is an oriented k-simplex in A, is as follows:

k+1
i+1
0k (e(vlv--s”kJrl)) = Z(_l)lJr Clop Ty V1 1 L.
=1

where v; indicates that this element is removed from the ordered list of vertices, so that

e(vr,...5vpsr) € Ce1. For example,

92(e125) = €25 — €15 + e,
die2) = e2 —er.
Note that 0¢ : Cy — 0 is defined to be the zero map—that is, the map that sends all inputs to 0.

Because 0 : C;, — Cp—q and 04— : C,—; — C_,, adjacent boundary maps can be composed, such
as O—1 o Oy, and fit together into what is called a chain complex:

9 0 )
C,—=>C — Cy— 0.

Now let us go back to the two cycles we had considered in C; and apply the boundary map.
Since 0 is a linear transformation, we have

01(e23 + €34 + e45s — e25) = 91(e23) + 91 (e34) + 01 (eas) — 91 (e2s)

es—eter—es+es—es—(es—e)=0,

d1(e12 + e25 — e15) = d1(erz) + 1 (ezs) — di(ers)

=e—e +es—e—(es—ep)=0.
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Both cycles map to zero! Initially, we called these 1-chains cycles because they corresponded to
cycles in the underlying graph of A (see Figure 4b). In homology, however, we now take this
“mapping-to-zero” property as the definition of a cycle. Namely, a k-cycle is an element of C;, that
is in the kernel of the boundary map 0 : C, — Cp_y.

The idea of homology is to count such cycles (up to equivalence), but only the ones that
are not “filled in” by higher-order simplices. It turns out that those are also easily detected,
because they will arise in the image of the previous boundary map. Recall our earlier computation,
01(e125) = €25 — €15 + e12. This gave us precisely the cycle bounding the 125 triangle. Combining
computations, we obtain

9y 0 92 (erzs) = d1eas —ers +e12) = (es —€2) — (s —e1) + (2 —e1) = 0.
In fact, it is true in general that
100 =0

for any 4. This very important observation can be proven via direct computation using the general
formula for 0, given above in Equation 1, and it is usually assigned as a homework exercise to
students in an algebraic topology course. What it means in terms of the usual notions of kernel
and image for linear transformations is that

ima; € kerdp_y € Cp_;.

In particular, the boundary of a k-simplex in Cj is always a cycle of (k — 1)-simplices in Cj_;. But
not all cycles are boundaries. Our other 1-cycle, e;3 + €34 + es5 — €35, is not the boundary of any
element in C,. The goal of homology is to detect the cycles that are 7ot boundaries—that is, the
genuine “holes.”

We are finally ready to define homology groups. (Note that, in our case, these groups are actually
vector spaces since the coefficients come from a field k.) The kth homology group of a simplicial
complex A with coefficients in a field k is the quotient vector space:

ker 0,

H,(A) = .
(D) O

The Betti numbers, By, are simply the dimensions of these quotient spaces:
Br = Bi(A) = dim Hy(A) = dim(ker 8;) — dim(im 9g1).
Since the boundary maps are linear transformations, we can also write
B = nullity 9, — rank 9.

These Betti numbers are integers, and they provide a simple summary of the homology of a
topological space.

What are the Betti numbers in our example? Going back to the simplicial complex A in
Figure 4b, we see that the corresponding boundary maps are given quite explicitly, as matri-
ces, in Figure 4c. By multiplying matrices, it is straightforward to verify that 0, o 0, = 0 and
0¢ o 01 = 0. Furthermore, we easily see that rank 9, = 1, nullity 8, = 0, rank 8y = 0, nullity 3y = 7,
and we can work out that rank 3; = 5 and nullity 3; = 2. We thus compute:

ﬂo = nullityao —rankal =7-5= 2,
Bi = nullity 3y —rankd, =2 —-1=1,
B2 = nullity 3, — rank 8; =0 —0 =0,
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where 0; : C3 — C; is a trivial map, whose rank is 0, since there are no 3-chains. Notice that
Bo = 2 is the number of connected components of A, while 8; = 1 is the number of 1-cycles that
were not “filled in.” And B, = 0 corresponds to the fact that there are no two-dimensional cavities.
These patterns are not just a coincidence in our example. By design, B¢ always counts the number
of connected components of a topological space, 1 counts 1-cycles that are not boundaries (up
to equivalence), 8, counts 2-cycles, like the surface of a sphere, that are not “filled in,” and so on.

The “up to equivalence” bit has so far been swept under the rug, but the idea is relatively
simple. In the quotient spaces ker 9;/1im 8.1, two k-cycles in ker 9 get identified if they differ
by a boundary in im 9. So, for example, if our simplicial complex were the shape of a cylinder,
with a 1-cycle at the top and another at the bottom, the two 1-cycles would end up identified.
The intuition that the linear algebra captures is that a loop of string around the top of a cylinder
could be pulled across the surface to the bottom cycle. The two cycles are thus considered to be
homologous, and only get counted once by 8.

In our Figure 4b example, something similar happens if you consider the long 1-cycle
e12 + €23 + €34 + ess — €15, which goes around both the filled-in triangle and the empty square in A.
Although this cycle is different from the two we considered before, and it is not itself a boundary,
it differs from e;3 + €34 + e45 — €25 by precisely the boundary cycle e, + e;5 — e;5 (literally, add
these two cycles and you will get the long one). So they get identified, and this identification is
implicit in the computation we did where we found that ; = 1.

PERSISTENT HOMOLOGY
The Idea of Persistent Homology

Persistent homology was originally designed as a tool for detecting the underlying shape of point
cloud data. Figure Sa illustrates this idea with » = 6 points in R?, but the goal of the technique is
to detect structure in a large number of points living in a high-dimensional space R?. In our small
example, the points appear to be noisy samples from a circle. But how can we “see” the circle?

Strictly speaking, the points themselves are topologically just a finite, disconnected set of points.
The fact that they seem to come from a circle has to do with the particular pattern of distances
between them. Intuitively, if we could somehow “fatten” the points, they would coalesce into a ring.
Here is a simple strategy to make this intuition precise: imagine surrounding each point by a ball of
radius 7 and keeping track of which balls intersect as the radius 7 grows. In this way, we can build a
sequence of simplicial complexes—one for each value of /—that tracks the intersection data of the
growing balls. The simplicial complex A(7) has a vertex for every point and an edge between two
vertices if their balls of radius r intersect. Higher-order simplices are then automatically included
in A(r) when all pairs of vertices corresponding to the simplex are connected by an edge. (This
kind of simplicial complex is often called a cligue complex because there is a (k — 1)-dimensional
simplex for each k-clique in the underlying graph.)

Although in our small Figure 5z example we can visualize the growing balls and see by eye
when pairs intersect, this is obviously not the way to build simplicial complexes in general. The
good news is that all the information is actually given in a single distance matrix D, whose entries
Djj = d(pi, p;) give the pairwise distances between points. The way to detect whether the balls
centered at p; and p; intersect is simple: check whether or not d(p;, p;) < 27. In fact, as you increase
7 from 0 to oo, you can imagine a sliding threshold on the distance matrix whereby at each » you
obtain a binary matrix B(r) with Bjj(r) = 1 if d(p;, p;) < 2»,and 0 otherwise. Interpreting these binary
matrices as adjacency matrices gives a nested sequence of graphs, G(r), which form the basis for
the simplicial complexes A(7). The distance matrix is all you need. In fact, the ordering of entries
in the distance matrix is all you need.

www.annualreviews.org o Topological Neuroscience

503



a Point cloud Filtration

Step 0/15 Step 1/15 Step 2/15 Step 3/15
2% R R R SR A
q’z Pse *p2  ps P> ps P2 Ps P2
p4‘ . p3 P4‘ Qp3 L] L] *—0
Step 4/15 Step 5/15 Step 6/15 Step 7/15
Ps P Ps V4l Ps P Ps P1
Distance matrix ’
D1 P> P3 Pa Ps pe P2 Ps P2 ps P> Ps P2
o Ps3 Pa p3 P4 Ps P4 Ps
§ Step 8/15 Step 9/15 Step 10/15 Step 11/15
Z810 | g; Pe P Ps P1 Ps P Ps P
£ bs P2 Ps P2 ps P2 Ps P2 e
D;= [lp; ‘Pj” Pa P3 P4 P3 2 p3 P4 P3
b Betti curves C Barcode Persistence diagram
w
9 6 y4l =15
[®} o
o i H §§ 212
G 3 0 P f—— S c 9 Hie
o bs 8S
Re] % Pe [ 0% H,
S H, = 3
S 0 NN SN TN TN NN NN SN SN NN TR NN N SN N | E 0
Z 000204060810 01234567 89101112131415 036 91215
Edge density, p Filtration step Birth (filtration step)
d Correlation matrix Filtraton )
P 4/15 P=5/15 p—6/15 p 7/15 p 8/15 p 9/15

123 456

> 13 3 14 I A
<
(0]
3 5 /
4 S
5 :g (ﬁoﬁhﬂz 200) (ﬁo:ﬂl:ﬁz = (1,0,0) (,Bo,ﬁhﬂz 1 1 0) (ﬁo,ﬁwﬁz (1,1,0 (ﬁoﬁhﬁz = (1,1,0) (ﬁo,ﬁhﬁz 1 1,0)
6 = [ e
_ p=10/15 S o p=11/15 H p=12/15 p=13/15 p=14/15 p=15/15
Cjj= corr(y; ;) 12 12 12 12 12 12
S K KT K < 4B
5 4 I S 5 4 5 4 5 4
(BoPrB) =(1,1,0) : (Bo,Br.) = (1,0,0) ; (ﬁo,ﬁ1,ﬁ2 100) (BosBrB2) = (1,00)  (BouBr.B2) = (1,0,0)  (Bo,Ba,B2) = (1,0,0)
e Betti curves f Random/shuffle Betti curves Random geometric Betti curves
2 6 « 1,000 w 60
= [} [}
S5 9 800 — Bilp) . <
“; 4 ° B 2 40
5 3 ° — Bs(p) | °
_g 2 & 400 2 20
ol S ————— z oL - . N z g |
00 02 04 06 08 1.0 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Edge density, p Edge density, p Edge density, p

(Caption appears on following page)

504  Curto » Sanderson



Figure 5 (Figure appears on preceding page)

Examples of persistent homology. () Point cloud data yield a distance matrix that can then be input into a persistent homology
computation. The first step is to translate the distance matrix into a filtration of graphs, which then gets turned into a filtration of
simplicial complexes. (#) Betti curves track the Betti numbers Bo, B1, B2 across each step of the filtration. (¢) Barcodes track individual
homology cycles across the filtration and thus carry more information than Betti curves. Persistence diagrams encode the start (birth)
and end (death) times of each bar in the barcode. (d—¢) Topological data analysis can just as easily be applied to a pairwise correlation
matrix. (d, ight) In the filtration, a homology 1-cycle (cyan) appears at step 6 and disappears at step 11. Note that although there appear
to be two 1-cycles at step 10, they only count as one because they are homologous. In step 11, the 1-cycle disappears because it becomes
“coned off” by node 6. (f, left) Betti curves for random independent and identically distributed (i.i.d.) matrices are highly stereotyped
(averages are dashed lines, 95% confidence intervals shown). (f; 7ight) Betti curves for random Euclidean distance matrices are also
stereotyped and vary by dimension. Panel fadapted from Giusti et al. (2015).

In Figure 5« (right), we see the first 12 steps of the filtration corresponding to the point cloud
Pi,- > ps. The edges are added in order of increasing distance, so that the first added edge connects
ps and pe, the second connects p; and p,, and so on. Notice that the first few steps serve only
to connect various components of the graph. Then a homology 1-cycle emerges at step 6, and
persists (albeit with a different shape) at steps 7 and 8, where the triangles with vertices py, ps, ps
and ps, p4, ps get “filled in” as 2-simplices because they are cliques in the graph. At step 9, the
1-cycle disappears. After building G(r) and A(r), we can now compute homology groups for the
simplicial complexes at every step of the filtration. The results of these computations are shown
in Figure 5b,c.

Betti curves are functions that simply track the Betti numbers, B, for each homology group at
every step of the filtration. The Betti curves in Figure 5b track the number of connected compo-
nents, B(p), and the number of homology 1-cycles, B1(p), as a function of edge density p as we
move through the filtration. In Figure 54, we began with six disconnected points, yielding 8o = 6
and g1 = B, = 0 atstep 0 of the filtration. As we progress, components get joined and B gradually
decreases to 1 by step 5 and then stays at 1. In contrast, (o) starts at 0, goes up to 1 at p = 6/15
(step 6 of the filtration), and goes back to 0 at p = 9/15 (step 9). Note that 8,(p) is identically 0
in this example, as no homology 2-cycle ever emerges.

The barcode is perhaps the most common method for depicting how homology cycles emerge,
persist, and disappear as we move from one step to the next in the filtration. At the beginning of
the filtration, each point is in its own connected component, so we start with six gray bars in Hy,
which we label by the points py, ..., ps. At step 1, we add an edge joining ps and pg; now there
are only five connected components. Using the convention that the labels with higher index “die”
first, the ps component gets merged into the ps component and the ps bar in Hy ends. Similarly,
at step 2 of the filtration we add an edge joining p; and p,, so the p, component gets merged into
the p; component and the p, bar ends. As we progress through the early steps of the filtration,
each added edge connects two previously disconnected components, and another Hy bar ends.
Finally, at step 5 we are left with only one connected component, and this corresponds to the long
gray bar that persists for the entire filtration. At step 6, when the homology 1-cycle emerges, we
see a blue H; bar emerge. It persists until step 9. Note that all the information about the bars is
encoded by the set of “birth” and “death” times defining the intervals over which the bars occur.
In a persistence diagram, each bar is represented by a point whose coordinates are the ordered pair
(birth tme, death time).

While the barcode and the persistence diagram encode exactly the same information, the Betti
curves lose information. Namely, they lose track of which homology cycles persist across several
steps of the filtration. Itis, in fact, nontrivial to identify homology cycles from one simplicial com-
plex to the nextin a filtration. Much of the early theory of persistent homology was making precise
mathematical sense of this idea and developing rigorous tools to track cycles across a sequence of
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homology computations. Betti curves do not require this tracking and can in principle be com-
puted in parallel and for sequences of simplicial complexes that do not necessarily fit into a nested
filtration. In practice, however, we use the same persistent homology software to compute Betti
curves (Giusti et al. 2015, Sanderson 2023).

How Long Does a Bar Need to Be?

When is a bar in a barcode long enough to indicate a significant topological feature of an un-
derlying manifold? This is an important question taken seriously by the TDA community, which
has been addressed with both theory and heuristics (see Cohen-Steiner et al. 2007, Bendich et al.
2013, Chazal et al. 2014, Bubenik 2015, Munch et al. 2015, Robins & Turner 2015, Adams et al.
2017, Kahle etal. 2023). One approach to determine the significance of a feature in a barcode is to
shuffle the data in some way and see how the feature is affected. If shuffling destroys meaningful
structure in the underlying manifold, we would expect the corresponding features in the barcode
to disappear. This is the heuristic used by Gardner et al. (2021, 2022), where the data were shuf-
fled to get rid of the relationship between grid cells with neighboring grid fields by shifting each
cell’s time series by a random independent amount. The authors then recomputed the pairwise
distances between population vectors of grid cells and the corresponding persistent homology.
Repeating this process 1,000 times produced a distribution of longest bar lengths for the shuffled
control. Comparing the bars of the original barcode to this distribution allowed them to identify
two significantly long bars in H; and one significantly long bar in H, (Gardner et al. 2021, 2022)
(see Figure 6¢).

Do You Need to Have a Distance Matrix?

There is considerable confusion in the literature about whether or not using the techniques of
persistent homology requires beginning with a distance matrix. In fact, the method works for any
symmetric matrix. In particular, what is used as the “distance” between points need not satisfy a
triangle inequality, and need not stem from an actual embedding of the data points in R”. One
can just as easily compute persistent homology from a correlation matrix (Figure 5d,e). The
main caveat is that in the case of correlation or similarity matrices, it makes the most sense to
run the filtration backwards—from high to low matrix values—so that the most similar points are
connected first (Figure 5d, right). This is analogous to connecting the “closest” points first when
the input is a distance matrix and the filtration is run from low to high (Figure 54). Flipping the
direction of the filtration can be easily accomplished by simply negating the input matrix; some
software even gives an option to specify the direction (Sanderson 2023). It does not matter if the
input is positive or negative—all symmetric matrices are equally valid inputs to the persistent
homology pipeline. This is because Betti curves, barcodes, and persistence diagrams can all
be computed with respect to a filtration step, as we did in Figure 5b,c, rather than as a function
of the radius of balls in Euclidean space.* What matters, then, is only the ordering with which
edges are added in the filtration, and this comes from the ordering of entries in a symmetric
matrix. These ideas are explained by Giusti et al. (2015) and underlie the flexibility we have

“That said, when the matrix entries are meaningful distances, it can be useful to track persistent homology
features—and study their significance—as a function of ball radius. Moreover, because the point cloud setup
was the original motivation, many software packages for persistent homology are superficially set up to expect
a distance matrix, and the output barcodes and persistence diagrams are often parameterized by this radius.
Translating to parameterize by filtration step amounts to a nonlinear rescaling of the x-axis for Betti curves
and barcodes.
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in neuroscience to apply TDA techniques to correlation and similarity matrices, as well as to
“distance” matrices that may not satisfy the triangle inequality.

What Kind of Structure Can Be Seen with Betti Curves?

While long bars in a barcode can help identify the shape of a neural manifold underlying a
set of population vectors, Betti curves lose information about the persistence of individual cy-
cles. However, they can provide valuable insight into the underlying geometry from correlations.
This is because we can compare Betti curves from data to Betti curves from null models with
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Figure 6 (Figure appears on preceding page)

Betti numbers, barcodes, and Betti curves in neuroscience applications. (#) Betti numbers for the circle, cylinder, double-cone, sphere,
and torus. The circle and cylinder have the same Betti numbers because they are homotopy equivalent, while the double-cone and
sphere Betti numbers match because they are homeomorphic. ()) Mammalian head direction cells during foraging in an open 2D
environment produce population vectors whose persistent homology barcodes show one long bar in Hy, one long bar in Hj, and no
long bars in H>, indicating a Betti signature of (B = 1, 81 = 1, B2 = 0) that is indicative of a connected, circular structure in the
underlying neural manifold (Chaudhuri et al. 2019). This topological structure was also found during REM and non-REM sleep.

(¢) Persistent cohomology barcodes for population activity vectors from mammalian grid cells belonging to two distinct modules (R1
and R2) during 2D open field exploration. The barcodes show one long bar in H°, two long bars in H', and one long bar in H?,
suggesting a toroidal structure for each module’s neural activity (Gardner et al. 2022). (d) Hippocampal place cells during open-field
exploration have pairwise spike-train correlations whose Betti curves reflect underlying geometric structure (Giusti et al. 2015). Betti
curves B1(p), B2(p), and B3(p) for a place cell correlation matrix are shown in yellow, red, and blue, respectively. (Bottorz) The same
three Betti curves for the place cell data are shown separately, overlayed on top of average Betti curves for random Euclidean geometric
controls in various dimensions (smz00th curves, lighter shades correspond to lower dimensions). (¢) Betti curves for the correlations of
monomolecular odor concentrations of strawberries and tomatoes (dashed lines) match those of an underlying low-dimensional
hyperbolic geometry (solid lines, left) and differ markedly from Betti curves for low-dimensional Euclidean structure (so/id lines, right).
Panel  adapted with permission from Chaudhuri et al. (2019), panel ¢ adapted from Gardner et al. 2022) (CC BY 4.0), panel d adapted
from Giusti et al. (2015), and panel ¢ adapted with permission from Zhou et al. (2018) (CC BY-NC 4.0).
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known geometric (or random) structure. In particular, Betti curves for different families of ma-
trices are strikingly stereotyped (Kahle 2009, 2011; Kahle & Meckes 2013; Giusti et al. 2015;
Zhou et al. 2018). For example, random symmetric matrices with independent and identically
distributed (i.i.d.) entries chosen uniformly from [0,1] have max(8;) < max(B82) < max(8;),
whereas random (Euclidean) geometric matrices whose entries are pairwise distances between
random points in [0, 1]* have max (8;) > max (8,) > max (8;) (Giusti et al. 2015) (see Figure 5f).
Moreover, the Betti curves for random i.i.d. matrices are orders of magnitude larger than Betti
curves for random geometric matrices. The utility of Betti curves to detect underlying geometric
structure is not altogether surprising, as Robins & Turner (2015) showed that certain summary
statistics of persistence diagrams can distinguish a variety of subtly distinct random spatial point
processes.

Persistent Homology as a Tool for Matrix Analysis

More generally, we see that Betti curves, barcodes, and other features that we can compute via per-
sistent homology can be thought of as methods for associating topological invariants to symmetric
matrices. In other words, they are new tools for matrix analysis (Giusti et al. 2015). But what are
they invariants of? Recall that in traditional matrix analysis we typically compute spectral features,
such as eigenvalues and singular values; these are invariants to change-of-basis transformations
from linear algebra. In contrast, the topological features computed via persistent homology can
produce invariants under nonlinear rescaling of the matrix entries, where the nonlinearity is 7z0n0-
tonic and thus order preserving. Since barcodes and Betti curves can be parameterized by filtration
step, as in Figure 5a—f, any order-preserving transformation of the matrix entries results in a new
matrix with exactly the same barcodes and Betti curves. TDA thus provides an opportunity to
move beyond traditional matrix invariants, based on linear algebra, to invariants that may be more
appropriate for neural data—which often contain hidden monotonic nonlinearities that can lead
to artifacts when using spectral techniques (Giusti et al. 2015). By design, many modern TDA
tools are agnostic to these hidden nonlinearities. In particular, persistent homology may be useful
for detecting underlying features of matrices that are obscured by such nonlinearities, including
low-rank or low-dimensional structure (Curto et al. 2021; E. Hansen, N. Sanderson, S. Nourin,
V. Candat, C. Curto & G. Sumbre, unpublished manuscript).
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Software

Early software packages to compute homology and persistent homology include CHomP (Harker
& Mischaikow 2014, Pilarczyk et al. 2014), JavaPlex (Tausz et al. 2014), Perseus (Mischaikow &
Nanda 2013), Dionysus (Morozov 2023a), PHAT (Bauer et al. 2017), GUDHI (Boissonat et al.
2025, GUDHI Proj. 2025), and the R-package TDA (Fasy et al. 2025).°

More recent software includes Ripser (Tralie et al. 2018), SimBa (Dey et al. 2019), Persim (Saul
2019), Eirene (Henselman & Ghrist 2016, Henselman-Petrusek 2021), Dionysus 2 (Morozov
2023b), giotto-tda (Tauzin et al. 2021), DREiMac (Perea et al. 2023), and open applied topology
(OAT) (Henselman-Pestrusek et al. 2024). The Python package Ripser is perhaps the most widely
used because of its accessibility and speed. Ripser takes as input a distance matrix and outputs a
persistence diagram (equivalently barcode) as a list of (birth, death) pairs (see Figure 5Sc).

Relevant to many neuroscience applications, the same persistent homology computations can
also take as input a correlation matrix, although most persistent homology software packages do
not make this explicit. Computation of Betti curves is also not standard in many TDA packages,
although a sophisticated user can easily compute Betti curves from a barcode or persistence dia-
gram. Because of this, a couple of “wrapper” software packages have been devised for easier use
by neuroscientists. An older wrapper, CliqueTop (Giusti 2015), was written for use by Giusti et al.
(2015) and was subsequently used by Zhou et al. (2018), Zhou & Sharpee (2022), and Zhang
et al. (2023). CliqueTop is MATLAB code that calls Perseus to compute persistent homology
and translates the results into Betti curves. It can take any symmetric matrix (e.g., distance ma-
trices or correlation matrices) as input. We recently introduced an updated wrapper in Python,
PyCliqueTop_2023, that instead calls Ripser for faster, more memory-efficient persistent homol-
ogy computations (Sanderson 2023). PyCliqueTop_2023 is designed to work in exactly the same
way as CliqueTop, taking any symmetric matrix as input and providing Betti curves as output.
It was first used to analyze neural correlations in zebrafish calcium imaging data (E. Hansen, N.
Sanderson, S. Nourin, V. Candat, C. Curto & G. Sumbre, unpublished manuscript).

BACK TO NEUROSCIENCE: TOPOLOGY AS A WINDOW
INTO CIRCUIT FUNCTION

Now that we have seen more of the mathematical details of topology, Betti numbers, and persis-
tent homology, we return to a few of the key neuroscience examples from before. In a nutshell,
there are three main types of applications, all represented in Figure 24 (counterclockwise from
bottom left):

1. Persistent homology can be used to detect topological features of an underlying neural
manifold. The neural manifold may represent the various states of a continuous or dynamic
attractor or a collection of population vectors that arise as stimulus responses (or both).

2. Persistent homology can be used to understand the topological structure of a stimulus or
representation space. The input can be stimulus-dependent neural correlations or another
type of stimulus similarity matrix, as in the olfaction study (Zhou et al. 2018).

3. Persistent homology and its variations, such as the persistent homology transform (Turner
et al. 2014), may be used to classify various graphical and tree-like structures that arise in
the physical brain (e.g., neuron morphology, vasculature, and connectomes).

It is important to note, however, that these applications are far from exhaustive. As previ-
ously mentioned, topological tools have also been used in a “black box” manner to provide new

Note that final publication dates often come much later than the original software release dates.
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data-driven features from, say, fMRI or other imaging data (Giusti et al. 2016; Sizemore et al.
2016, 2018; Anderson et al. 2018). In this context, topological features may be more difficult to
interpret, but they appear to have diagnostic value (Stolz et al. 2021).

Connecting Neural Circuits to Function

Perhaps the most exciting aspect about using topology in neuroscience, however, is the potential to
connect structures that are echoed across different areas of analysis, such as the ones represented in
Figure 24. In particular, topology can provide a natural approach to unifying the neural manifold
and neural circuit perspectives (Langdon et al. 2023), as well as connecting neural circuits and
activity to the structure of represented spaces (Curto 2017). For example, the circular structure of
a stimulus/representation space, such as the space of possible heading directions, can be reflected
in the topology of the corresponding neural circuit—for example, the ring of “compass neurons”
in the fly’s neural compass system (Kim et al. 2017). In this case, the topological structure of the
represented space and that of the neural circuit are more or less obvious. However, the fact that this
same circular structure is also echoed in high-dimensional neural activity is much less transparent,
especially as the flies’ mental maps can be modified by experience (Fisher et al. 2019, Kim et al.
2019). In contrast, in the mammalian head direction circuit or grid cell circuits, circular or toroidal
topologies are expected from the representations, but it is the physical structure of the network
that is least transparent. In these cases, topological tools have been successfully used to show that
the structure of neural activity echoes the topology expected from representations (Chaudhuri
etal. 2019, Gardner et al. 2022). We can now explain how.

Figure 64 reviews the Betti numbers associated to various basic topological structures, includ-
ing the circle, cylinder, sphere, and torus. Shapes that are homotopy equivalent or homeomorphic
have identical Betti numbers. When persistent homology is applied to population activity vectors
that lie along a lower-dimensional neural manifold, the barcode is expected to contain long bars
corresponding to the nonzero Betti numbers of the manifold. In the case of mammalian head di-
rection cells, the barcodes revealed a Betti signature of (8p = 1, ; = 1, 8, = 0), consistent with
a circle or a cylinder (Chaudhuri et al. 2019) (Figure 6b). For grid cells, on the other hand, the
barcodes for each grid cell module produced the topological signature of a torus: (8o = 1, ;1 = 2,
B2 = 1) (Gardner et al. 2022) (Figure 6¢). In both cases, population activity vectors were analyzed
as point cloud data, following the first paradigm of Figure 2.

However, it is important to note that the data can be sufficiently high-dimensional and noisy
that various dimensional reduction methods are often applied before persistent homology com-
putations are performed (Kang et al. 2021). For example, the data preprocessing by Gardner et al.
(2022) involved first clustering grid fields to yield distinct grid cell modules, projecting the pop-
ulation activity vectors for each module to a 6D space using principal component analysis (PCA),
and then downsampling in time to yield a 6 x 1,200 matrix reflecting 1,200 reduced activity vec-
tors in RS. From here, a 1,200 x 1,200 distance matrix was computed, and this was input into the
Ripser software. The outputs were barcodes, as seen in Figure 6¢.5

In the framework of Figure 2b, the above analyses focused on point clouds of population activ-
ity vectors given by the columns of the neural activity matrix. Figure 6d,e shows results using the
complementary approach, focusing on correlation structure computed from the rows. The goal of

5The topology computation reported by Gardner et al. (2022) was technically persistent cohomology rather
than persistent homology. Homology and cohomology are dual topological theories, although cohomology
typically contains additional information. The distinction is not important for understanding the barcode
results presented here and is beyond the scope of this review.
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these analyses was to infer the geomzetric structure of the represented space via topological signa-
tures of neural or stimulus correlations. Using the CliqueTop software (Giusti 2015), Betti curves
were computed from place cell correlations and compared to those arising from various control
matrices (Giusti et al. 2015). The place cell Betti curves revealed a low-dimensional Euclidean
structure (Figure 6d). In contrast, a very similar Betti curve analysis in the case of olfactory corre-
lations revealed low-dimensional hyperbolic geometry (Zhou et al. 2018) (Figure 6e). Although
the interpretation of persistent homology is less straightforward when the input is a matrix of
similarities or correlations—as opposed to distances—this approach allows one to gain interest-
ing geometric insights even when the underlying space being represented is topologically trivial,
such as the place field representation of an open field environment (Giusti et al. 2015, Curto 2017).

Circling Back to Grid Cells

We end by going back to the beginning. In the case of grid cells, it was expected that neural ac-
tivity would take the shape of a torus because the structure of the space represented by grid fields
is a torus (Curto 2017, Kang et al. 2021). However, this expectation only held in the context of
an animal wandering around a two-dimensional “open field” environment. What would happen
when the interaction between grid fields and the represented space was not so transparent? For-
tunately, Gardner et al. (2021, 2022) also addressed this question. They recorded grid cells while
the animal was in a wagon-wheel environment, which itself had multiple holes, as well as while the
animal was running in place (running wheel), and during sleep. In all cases, they found the neural
population activity conformed to a torus in R”. This remarkable fact provides evidence that the
toroidal topology of grid cell activity is emerging from within the entorhinal cortical circuit itself,
rather than being inherited from external sensory inputs. In other words, the topological findings
reveal an important fact about circuit structure and function. Similarly, Giusti et al. (2015) found
that the geometric structure of place cell coding detected by Betti curves was also present during
wheel running and sleep.

Finding the tori in grid cell activity required first finding the modules in a large population of
grid cells, and this is a step that involved considerable preprocessing (Gardner et al. 2022). Grid
fields needed to be computed for each neuron, and these in turn had to be classified according
to their scale and orientation so that the grid cells could be separated by module (see Figure 1).
What if we did not have access to the grid fields, but only the grid cell activity? This is analogous
to the question asked by Curto & Itskov (2008), who argued that place cell activity should reflect
the topology of an animal’s environment—even when the place fields are unknown. What shape is
represented by the full population of grid cells when the individual grid fields—and corresponding
modules—are unknown? This remains an open question.

APPENDIX

Here we provide a table (Table 1) with some standard mathematical notation, as well as a glossary
of terms that were used in our explanations of topology and persistent homology. All notation
and definitions are standard in the mathematics literature and can be found in textbooks (e.g., see
Hatcher 2002). We include them for completeness, as many of these terms may be unfamiliar to
neuroscientists.

Functions

A function f'is typically denoted as f: X — ¥, where X is the domain (input space) and Y is the
codomain (output space). A subset of elements in X satisfying a certain property P is denoted with
the set-theoretic notation {x € X | x satisfies P}, where “|” is read as “such that.”
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Table 1 Some common mathematical notation

Notation Meaning
k A field of numbers such as R, Q, C, or Z/pZ for a prime p
R The real numbers
Q The rational numbers
C The complex numbers
Z The integers (a ring but not a field because of a lack of multiplicative inverses)
[a, b] The closed interval of all real numbers between # and 4, including end points
(a, b) The open interval of all real numbers between # and 4, excluding end points
7 The empty set
-1 The inverse of a function f
idx The identity map (function) on X that sends every element of X to itself
gof The composition of functions fand g; if f: X - Yand g: V' — X, thengof: X - X
sends x — g(f(x)), and fo g: V' — Ysends y — f(g(y))
S An element of (e.g., 0 € A means o is an element of the set A)
c A subset of (e.g., T € o means all elements of T are also in o)
Bk The kth Betti number, an integer quantifying a topological feature

m Preimage: Given a function f: X — Y and an element y € ¥, the preimage f~'(y) is the set
of all elements of X that map to y under f. In other words, f~'(y) = {x € X | f(x) = y}.

m Inverse f~: If f: X — ¥, the inverse f ! assigns to each y € Yits preimage f~(y). Note that
the set £~!(y) may have more than one element, or be empty, so the inverse is not necessarily
a function.

m Bijection: A function f: X — Y is a bijection if it provides a one-to-one correspondence
between elements of X and Y. That is, for each y € Y there is a unique x € X such that
f(x) = y. In this case, f~! is also a bijection.

m Monotonic: A function f : R — R is monotonically increasing (decreasing) if for all x < y, we
have f(x) < f(y) [f(x) > f(y) for decreasing].

Combinatorics

The following combinatorial objects are essential for understanding the basics of simplicial and
persistent homology.

512 Curto

Graph: A graph G = (V, E) is a set of vertices, V= {1, 2,..., n}, and a set of edges between
vertices, E € {(,/) | i,j € V'}. In a directed graph, the edges are viewed as ordered pairs, so
that (4, /) € E indicates i — jin G.

Clique: A clique is a complete graph (or subgraph) where all possible edges between vertices
are included.

Hypergraph: A hypergraph is a generalization of a graph that allows for higher-dimensional
“edges” consisting of subsets with more than two vertices. Equivalently, a hypergraph is
simply a set of subsets of {1,. .., n}.

Simplicial complex: A simplicial complex A on n vertices (nodes) is a set of subsets of
{1,..., n} that is closed under subsets of its elements. In other words, if 0 € A and
T C o, then © € A. The elements of A are called simplices and are often thought of
geometrically as in Figure 44.

Permutation: A permutation is a bijection 7 : {1,...,n} — {1,..., n} that reorders the ele-
ments in a sequence 12- - -z. For example, 12345 — 15324 corresponds to the permutation
withm(1)=1,7Q2)=5,73)=3,7(4) =2,and 7 (§) = 4.
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m Transposition: A trunsposition is a permutation that interchanges exactly two elements of a
sequence and fixes all others. For example, 12345 — 32145 corresponds to the transposition
1<3 with (1) = 3, #(3) = 1, and all other elements sent to themselves.

m Even/odd permutation: A permutation is called even if it can be achieved as the composition
of an even number of transpositions. Otherwise, it is odd. For example, 12345 — 23145
is an even permutation, as it can be achieved by composing 1<>2 with 1<>3. In contrast,
12345 — 42315 is odd.

Topology

The following concepts take some work to get used to. For more intuition and details, we
recommend Chapter 0 of Hatcher (2002).

m Topological space: A topological space is a set X equipped with a “topology” U (see below).

m A topology: A ropology on a set X is a collection U of subsets of X, called the open sets of
X, that satisfy the following three criteria: (#) @ € U and X € U; (b) any union of open sets,
possibly infinite, is also an open set in I/; and (¢) any intersection of finitely many open sets
is also an open set in U.”

m Continuous function (or “map”): A function f: X — Y is continuous if for all open sets
U C Y the preimage f~!(U) is an open set in X. Note that this definition requires a des-
ignation of what are the “open sets” (the topology) for both X and Y. This matches the
familiar notion of continuity for real-valued functions f : R — R, when R is equipped with
the standard topology based on open intervals of the form (z, b).

8 Homeomorphism: A homeomorphism is a continuous bijective function f: X — ¥ such that
f~!is also continuous.

m Homeomorphic: Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism f: X — Y. This is the strongest notion of “topological equivalence” that
two spaces can have, and we write X = Y.

m Homotopy: A family of continuous functions 4, : X — 7, for ¢ € [0, 1], is a homotopy if the
associated map H : X x [0, 1] — Y, given by H(x, t) = b,(x), is continuous.

m Homotopic: We say that two functions f: X — Y and g: X — Y are homoropic, and write
[~ g, if there exists a homotopy 4, connecting them so that f'= b and g = ;.

m Homotopy equivalent: Two topological spaces X and Y are homoropy equivalent if there exist
mapsf: X — Vand g: ¥ — Xsuch that gof ~idy and f o g~ idy.

Linear Algebra

Here we review standard terms from linear algebra that can be found in any introductory text-
book. We assume familiarity with vector spaces and omit the definition with its lengthy list of
axioms. The concept of a quotient vector space is probably less familiar, but essential for defining
homology groups.

m Linear transformation: A /inear transformation is a function T: X — Y between two vector
spaces, X and ¥, satistying T{ax + by) = aT(x) + bT(y) for all vectors x, y € X and all scalars
a,b.

m Kernel: The kernel, ker T, of a linear transformation 7' : X — Y is the set of all vectors
x € X such that T(x) = 0.

7Why only finite intersections? Consider open sets of the form (—%, %) CR,forn=1,2,3,.... Any finite

intersection yields the open interval (— %, %) where Nis the largest » among the intersected sets. If, however,

we take the infinite intersection (< ; (—%, %), we obtain the set {0}, which is not open.
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m Image: The image,im T, of a linear transformation 7: X — Y'is the set of all vectorsy € I’
such that y = T{(x) for some x € X.

m Rank: The rank of a linear transformation 7, denoted rank 7', is the dimension of its image.
If T'is given as a matrix, then rank 7" is the dimension of the column space; equivalently, it
is the largest number of linearly independent column vectors of 7.

m Nullity: The nullity of T, denoted nullity T', is the dimension of its kernel. The rank-nullity
theorem says that for 7': X — Y, we always have rank 7" + nullity 7' = dim X.

m Quotient vector space: If X and 1 are vector spaces, and X C Y, then the quotient space
Y/X is the vector space obtained by identifying all elements of 1" that differ by an element
of X. We can represent the elements of ¥/X as equivalence classes [y], for y € ¥, where
[y] ={y + « | x € X}. With this notation, Y/X ={[y] | y € Y'}.
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