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Real-time regime shift detection between chaotic dynamical systems via time series analy-

sis demands quick and correct, theoretically guaranteed methods. Often the best implemented

techniques in the field are well-motivated heuristics and even interpretable statistics are scarce.

Topological data analysis can contribute to the canon of traditional methods for analyzing nonlin-

ear time series but is not computationally cheap. We introduce a topological membership test for

sliding windows of time series data that uses a sparse simplicial complex - the witness complex - to

model the data and assess its performance across a range of model parameters affecting computa-

tional efficiency. We then explore how the topology of witness complexes changes across this range

of model parameters. We next define a simplicial complex whose construction incorporates the

temporal information available with time series data. We experimentally show that this construc-

tion results in filtrations with fewer simplices and improved topological signature. We apply our

techniques to synthetic time series data including numerical solutions of classical low dimensional

chaotic systems Lorenz and Rössler systems of ODEs as well as regimes of the higher dimensional

Brunel neuronal network model and experimental live voltage recordings of musical instruments.
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Chapter 1

Introduction

Important real-world phenomena evolve in time according to complicated relationships be-

tween a collection of variables. The safety of a nuclear reactor is dependent on the heat of the

system generated from numerous atomic reactions being successfully contained, the stability of a

bridge requires damping of the multitude of vibrational frequencies governed by weight load and

windspeed, cooperation of millions of users ensures the security of the internet, and even the dynam-

ics of the human brain and human heart are dictated by geometric and chemical-based interactions

between billions of cells. Modeling these phenomena using equations of evolution allows one to

obtain a qualitative description of such time-varying systems. The field of dynamical systems aims

to classify systems according to their behavior over time and uses properties of this behavior to

make predictions.

Regime-shift detection is the process of determining when changes in the dynamics occur. If

a system is operating normally, a shift in dynamics can become a fault in the system. The bridge

can collapse; the nuclear reactor can melt. Detecting such a shift can serve as a warning of larger

changes to come.

Time series analysis aims to study dynamics under the restriction of having only a single

measurement of the complex system. Whether this signal is the temperature of the nuclear reactor,

the predominant frequency of the vibrating bridge, the number of users on a certain website or the

number of heartbeats per minute, the constraints from having one measurement have been met

with creative approaches for extracting impressive amounts of information about the complicated
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underlying system. The goal of this dissertation is to combine topological data analysis (TDA) and

time series analysis to address the challenges and utilize the unique structure of temporally ordered

streams of data.

Topology is loosely the study of shape properties resulting from nearby connections. This

perspective brings under scrutiny the notion of components, paths, cycles and holes. Most topolog-

ical data analysis (TDA) methods model physical or abstract objects without a sense of temporal

development. Modern research on TDA involving time series and dynamical systems data centers

around periodic data or distinguishing between periodic versus chaotic dynamical systems. Topo-

logical analyses of dynamical systems rarely begin with time series and those beginning with time

series do not often look for higher dimensional features to describe the dynamics.

Time and cost are critical in any practical data analysis. This is especially true when the

intention is to rapidly detect changes in signals monitoring important human endeavors. As a step

toward an online topology-based regime-shift detection algorithm, this research is driven by the task

of efficiently classifying chaotic dynamical systems from time series via computational topology. The

thesis of this dissertation is that a sparse model - the witness complex - can contribute to successful

topological methods of time series analysis either with care in selecting model parameters or upon

modifying the model.

In Chapter 4, we present a topological membership test for machine learning on sliding win-

dows of time series data and investigate its strengths and limitations. The variability in topological

representation of the same data set based on model parameters leads us to introduce heuristics for

parameter selection in Chapter 5 that encourage the model to capture the global topology with

minimal local topology, or noise, added to the signal. In Chapter 6, we define a new topological

model that reduces the cost of obtaining a correct and consistent topological signature of chaotic

dynamical systems from time series data. We explain our methods with experimental periodic time

series data and test the methods on synthetic time series from classical low-dimensional chaotic dy-

namical systems. We demonstrate the limitations of our methods on non-stationary synthetic time

series data from high-dimensional dynamics on a neuronal network. These data sets are presented
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in detail in Chapter 3.

In the next Chapter 2 we review historical motivations for investigating chaos and techniques

of studying dynamical systems and time series. We present the method of Taken’s delay coordinate

embedding in both theory and practice as it plays a key role in our topological approach for ana-

lyzing time series. We then recall constructions from TDA and present the statistics we implement

as validation of the success of our novel topological techniques for time series analysis.



Chapter 2

Background

2.1 Historical Motivations for Studying Chaos

In the late 1800s, Poincaré wrestled with the gravitational 3 body problem. This interest

in the movement of the stars led to his discovery of chaos. Working with differential equations

to describe flows in phase space, Poincaré was concerned with both qualitative description and

prediction of time-varying systems. He set out much of the groundwork of algebraic topology in

1895, namely homology, cohomology and the fundamental group, in his Analysis Situs, which aimed

at answering “What makes a sphere a sphere?” and generally classifying topological spaces. A few

of his mathematical contributions include return maps, stable and unstable manifolds, and periodic

orbits [51].

In 1927, Birkhoff introduced the concepts of wandering and non-wandering sets for flows

on manifolds, further exploring the nuanced ideas of attracting and invariant sets of dynamical

systems [4] . In 1930s, the Morse-Hedlund papers introduced symbol spaces and shift maps as

a means of studying geodesic flows, and from this developed symbolic dynamics [37]. An early

goal of symbolic dynamics became to classify, up to conjugacy, the shift maps of a shift space of

finite type. Meanwhile, the question of structural stability of flows under perturbation remained a

focus of the global analysis community, including Kolmogorov and Arnold [31], [3] . In 1968 and

1970, respectively, Sinai and Bowen introduced Markov partitions to discretize the phase space of

one-dimensional maps, shifting the some of the attention in symbolic dynamics back to dynamics

from the fields of coding and information theory to which it had drifted [58], [6].
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Central to the modern study of dynamical systems is the work of Stephen Smale who in the

1960s on the beaches of Rio continued the deep study of topology, proving sphere eversion, the

Poincaré Conjecture for dimensions greater than or equal to five, and the h-cobordism theorem. In

1967, he published the important survey paper “Differentiable Dynamical Systems” that lays down

the “what-is-what” with diffeomorphisms, flows and conjugacy[59]. Motivated by the Van der Pol

oscillator, Smale defined the horseshoe map which, by squishing, stretching and folding, creates

infinitely many periodic orbits amongst chaotic trajectories. Along with R.F. Williams, Smale

also presented the solenoid as an expanding attractor of a hyperbolic dynamical system, a fruitful

classification of dynamical systems upon which much successful mathematics has been based [70].

Around this time, the meteorologist Edward Lorenz had begun studying nonlinear weather models

and in 1963 discovered a family of strange attractors, basically inventing chaos and making popular

the idea of “the butterfly effect” [35]. Exemplifying the ideas of Poincaré in practice, Hnon then

introduced an even simpler fractal attractor in a lower dimension[21].

These surprising examples of peculiar attractors that arose from the original intersection

of pure thought and visual computer experimentation continue to motivate the creation of novel

mathematics that strive to capture the essence of such dynamical systems to this day.

2.2 Dynamical Systems

A dynamical system consists of three pieces of data, (ϕt, I,X): “an evolution rule that

defines a trajectory as a function of a single parameter (time) on a set of states (phase space)”

[41]. The parameter I serves as an indexing set and has at minimum the structure of a monoid.

The evolution rule ϕt is a family of maps {ϕt : X → X}t∈I that must satisfy ϕt ◦ ϕs = ϕs+t and

ϕ0 = identity. That is, the monoid structure must be passed to the composition structure of the

family of maps.

In the case of continuous dynamical systems, the indexing set is R, the phase space is a

smooth manifold M, and the evolution rule is sometimes called a flow. Yet when we only have

knowledge of the system in a single direction (i.e. its past or its future), our indexing set I is the
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monoid R− of R+ with operation addition. A discrete indexing set like Z produces a discontinuous

evolution rule known as a map. The rules governing flows and maps are different. For example,

chaos can arise in a minimum of three dimensions from a flow but can occur in two dimensions from

a map. A dynamical system is called deterministic if the evolution rule is a function that sends

each state to a unique state. This is in contrast to random dynamical systems where the evolution

rule acts on a probability distribution over the set of states. A common technique for studying

non-deterministic dynamical systems is to couple a noise model either additively or multiplicatively

to a deterministic evolution rule to produce a stochastic differential equation.

Our focus in this thesis is on classifying chaotic deterministic continuous dynamical systems

given discrete sequential measurements known as a time series. Classifying continuous deterministic

dynamical systems can be tricky, and various measures of similarity and difference have been

developed over the years. One method is to use topology and geometry to distinguish the attractors

of dynamical systems. We explore and improve upon modern TDA techniques to this aim. This

hot topic has a rich history. To contextualize and motivate our experimental analyses with theory,

we recall the following definitions [41]:

• a set Λ ⊆ X is invariant under ϕ if ϕt(Λ) = Λ for all t ∈ I.

• the collection of all limit points of the forward trajectory, ϕt(x) for t > 0, of a point x is

called the omega-limit set of x and is denoted ω(x)

• a compact set N such that ϕt(N) ⊂ interior(N) for t > 0 is called a trapping region

• a set Λ is called an attracting set if there exists compact trapping region N containing

Λ such that Λ =
⋂
t>0 ϕt(N)

Def. An attractor of a dynamical system (ϕt, I,X) is an attracting set Λ such that there

exists some point x ∈ X such that Λ = ω(x).

In certain cases, what is meant by “the topology of the attractor” is clear. For example,

limit cycles have the topology of a circle; quasiperiodic dynamics with flows ϕt that have a Fourier
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series-like expansion ϕt = ϕ(t) =
∑

m∈Zd ame
im·ωt with incommensurate frequency vectors ω have

attractors with the topology of tori. To describe strange attractors arising from chaotic dynamical

systems, we must first define chaos. To be chaotic requires satisfying the following two properties:

• A flow ϕt is topologically transitive on an invariant set Λ if for every pair of nonempty

open sets U, V ⊂ Λ there is a t > 0 such that ϕt(U) ∩ V 6= ∅.

• A flow ϕt is said to exhibit sensitive dependence to initial conditions on an invariant

set Λ if there exists a fixed r > 0 such that for each x ∈ Λ and any ε > 0, there is a y ∈ Bε(x)

such that |ϕt(x)− ϕt(y)| > r for some t ≥ 0.

Def. A flow ϕt is chaotic on a compact invariant set Λ if ϕt is transitive and exhibits

sensitive dependence to initial conditions on Λ.

The set of initial conditions of a dynamical system which approach an attractor is called its

basin of attraction.

2.2.1 Lorenz & Rössler Equations

Early claims of chaos were often merely conjectures. Famously introduced by meteorol-

ogist Edward Lorenz in 1963 [35] to model atmospheric convection, the Lorenz attractor was

not confirmed chaotic until 2002 in a computer-aided proof by Tucker [63]. The Lorenz system

is a three dimensional system of nonlinear ordinary differential equations in dynamic variables

x(t), y(t), z(t) ∈ R and constant parameters σ, ρ, β ∈ R,

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz. (2.1)

For σ = 10, ρ = 28 and β = 8
3 , solutions to Lorenz system for generic initial conditions within

the basin of attraction are chaotic. Computer-generated plots of numerically integrated solutions

to these equations showed confined yet unpredictable behavior. This led to the belief that the

analytical solutions of the Lorenz system were in fact chaotic. Below in Figure 2.1 is a computer-



8

generated plot of a solution to the Lorenz equations with initial condition in the basin of attraction

of the strange Lorenz attractor. Notice the striking features, like the two large wings of the “Lorenz

butterfly” and the single holes in the centers of each of the wings. As well, note the subtle features,

like the Cantor-like banding extending radially outward from the holes in the center of the butterfly

wings.
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Figure 2.1: Typical trajectories of chaotic dynamical system spend time approaching a strange
attractor according to its invariant measure: (a) Lorenz attractor (b) Rössler attractor.

Another classical example of a chaotic dynamical system introduced and proved as such in

1976 [52] is the Rössler system of equations created by medical doctor Otto Rössler that were later

found useful for modeling chemical kinetics [53]:

ẋ = −y − z, ẏ = x+ ay, ż = b+ z(x− c) (2.2)

for constant parameters a, b, c ∈ R. With only one nonlinear term, the Rössler system is considered

less complex than the Lorenz system. Chaos is observed for generic initial conditions when a =

0.2, b = 0.2 and c = 5.7. The behavior of a typical trajectory is to rotate about the equilibrium

near the xy-plane, occasionally going up and down in the z-dimension as if over a bridge due to a

far away equilibrium in the phase space that nonetheless affects typical trajectories of the Rössler

system. An interesting feature is that the height of this bridge varies with each visit to this region
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of the phase space. Figure 2.1 exhibits the Cantor-like banding of a trajectory approaching the

Rössler attractor.

2.2.2 Lyapunov Exponents

One way to quantify the sensitive dependence on initial conditions necessary to prove chaos is

by Lyapunov exponents, which report the exponential growth constant of the distance between

the forward trajectories of two nearby points as a function of time. The Jacobian Dϕt|x∗ associated

to a flow ϕ : X → X at x∗ ∈ X defines a set of Lyapunov exponents {hi(x∗)}ki=1 as the logarithm

of the eigenvalues of the limiting matrix solution

Λ(x∗) = lim
t→∞

1

t
(Φ(t, x∗)

TΦ(t, x∗))
1
2t

(2.3)

where Φ(t, x∗) is the fundamental matrix solution to Φ̇(t, x∗) = Dϕ|ϕt(x∗)Φ(t, x∗) with Φ(0, x∗) =

0 [34]. Oseledec’s multiplicative ergodic theorem says that if the orbit of x∗ ∈ X under the flow ϕ

generates an ergodic probability measure, this limit of matrix multiplication given by Λ exists and

is the same for almost every x∗ with respect to this ergodic measure [49]. We will revisit this notion

of ergodicity momentarily, noting here that it allows us to capture descriptive information about

dynamical systems from a generic single sequence of observations, rather than having to study the

system behavior for all possible initial conditions. If we order the {hi} in decreasing order and

consider

h1 ≥ h2 ≥ . . . hj ≥ 0 ≥ hj+1 ≥ . . . ≥ hk, (2.4)

the associated eigenvectors corresponding to the first j Lyapunov exponents determine local direc-

tions in which stretching occurs while those corresponding to the last k − j Lyapunov exponents

determine locally contracting directions. Every autonomous flow has a zero Lyapunov exponent

in the direction of the flow. Having the maximal Lyapunov exponent h1 > 0 for a compact

attractor is an indication of chaos.
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In practice one uses computer algorithms like finite-time Lyapunov exponents or finite-size

Lyapunov exponents to approximate these theoretical definitions [61]. The Lyapunov exponents for

the Lorenz system are approximately (0.9056, 0, -14.5723), while the Rossler system has Lyapunov

exponents approximately (0.0714, 0, -5.3943) [60]. How the fundamental matrices stretch and

rotate a unit sphere to provide principle axes of various radii is in part captured by the set of

Lyapunov exponents. What the Lyapunov exponents miss is how the rotational aspect of the

sequence of matrices evolves. Rotations, leading to folding rather than stretching, are another

geometric property one can measure of a dynamical system. A finite-time curvature algorithm

recently introduced by Erik Bollt can computationally capture these features of chaotic dynamical

systems [61].

2.2.3 Fractal Dimensions

Chaotic dynamical system also exhibit self-similarity which can be measured geometrically

through the idea of dimension. One definition of dimension called the Lyapunov (Kaplan-Yorke)

dimension is defined in [20] using the Lyapunov exponents as

DKY ≡ k +

∑k
i=1 hi
|hi+1|

. (2.5)

where k is the largest integer for which
∑k

i=1 hi > 0. For instance, the Lorenz and Rössler system

have such k = 2 and the Kaplan-Yorke dimensions are 2.06215 and 2.0132, respectively [60]. This

non-integer dimension shows fractal structure, here revealing the foliation of the wings of the

Lorenz butterfly and the Rössler bridge that require just a little more than two dimensions to exist.

Another notion of dimension is the box-counting (capacity) dimension.

Def. The box-counting dimension of a set S in a metric space is the absolute value of

the limit as ε → 0 of exponential growth constant of the number of boxes N(ε) needed to cover a
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set of points with a grid of boxes of length ε,

Dbox ≡ − lim
ε→0

ln(N(ε))

ln(ε)
, (2.6)

when this limit exists. When the limit does not exist, one defines the upper box-counting

dimension and lower box-counting dimension as the lim inf and lim sup, respectively. This

definition has the advantage of being easy to compute. Weighting the regions of the phase space

that are visited more frequently leads to the one-parameter family of generalized dimensions Dq

introduced by Reyni [20]. This approach to classifying dynamical systems exploits their measure-

theoretic properties. The further structure of a measure is also useful for developing the ergodic

theory of dynamical systems necessary for extrapolating information about the evolution of the en-

tire state space from sequential observations from a single initial condition. Measurements reported

by a time series are ideally of this form, making ergodic theorems crucial for analyzing dynamical

systems from time series.

2.2.4 Ergodicity

A measure preserving transformation, (X,β, µ, ϕt) is a dynamical system with the addi-

tional data of a σ-algebra β of measurable sets of X for some measure µ such that ϕt is measurable

and µ(ϕt(E)) = µ(E) for all E ∈ β. Such a measure µ is an invariant measure of the dynamical

system and a measurable set E ∈ β is invariant if ϕ−1
t (E) = E. When µ(X) = 1 we have a

probability preserving transformation.

Def. A measure preserving transformation is ergodic if every invariant measurable set or

its complement has measure 0.

The ergodicity of the Lorenz attractor was proved by Tucker in 2002 when establishing its

chaos through the existence of an invariant measure [63] . Note that such ergodicity does not hold

for the Lorenz system of equations as defined on all of R3, only for the dynamics when restricted

to the Lorenz attractor itself.
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Additive ergodic theorems often say that integrating a measurement function over a trajectory

of some dynamical system gives in the time limit the same result as integrating that measurement

function according to the invariant measure of the dynamical system. The specifics of the type of

function may change, but the existence and equality of these limits provides the ability to glean

information from a single time series about an entire dynamical system. This “time average equals

space average” property has been crucial for scientific advancement. The first published theorem

of this nature was Birkoff’s in December 1931 for L1 functions achieving point-wise convergence

almost everywhere [5].

Thm. (Birkhoff’s Pointwise Ergodic Theorem): Let (X,β, µ, ϕ) be an ergodic probability

measure preserving transformation and let f ∈ L1(β, µ) be an integrable function. Then for µ-

almost every ω ∈ β,

lim
N→∞

1

N

N−1∑
i=0

f(ϕN (ω))→
∫
X
fdµ. (2.7)

Months later in 1932, von Neumann published a mean version for L2 functions and convergence in

the operator norm [68].

Both of these are sufficient to guarantee the “time average equals the space average” phe-

nomena the notion of ergodicity seeks to describe, yet they predate the modern study of dynamical

systems which was born with the advent of computational experimentation in the 1960s and 1970s.

When the study of dynamical systems began incorporating local analyses of the dynamics involving

matrices in the tangent bundle, new theorems were needed to ensure the global application of such

descriptions. To show that Lyapunov exponents are well-defined requires the multiplicative version

of the ergodic theorem provided by Oseledec in 1968 [49], [13]. We recall the following definition

for a cocycle of an dynamical system (X,ϕ, I) where X is an n-dimensional manifold.

• A cocyle is a map A : (X, I)→ Rn2
that satisfies A(x, 0) = Id and A(x, s+t) = A(ϕt(x), s)·

A(x, t) ∀s, t ∈ I.

Thm. (Oseledec’s Multiplicative Ergodic Theorem) Let A be a cocyle over an ergodic
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probability preserving transformation ϕt such that log||A|| + log||A−1|| ∈ L1(β, µ). Then there

exist real numbers λ1 > λ2 > . . . > λk and ϕt-invariant subbundles 0 ( A≤λk ( . . . ( A≤λ1 = A of

A defined for almost every x ∈ X such that for any vector v ∈ A≤λix \A≤λi+1
x , we have

lim
t→∞

1

t
log||A(t)

x v|| → λi. (2.8)

To study the flow associated to continuous deterministic dynamical systems the cocycle A is

often taken to be the Jacobian Dϕs|x∗ for some choice of discrete time step s[69]. The existence

of these subbundles invariant under rate of expansion guarantees that the Lyapunov exponents as

computed from the fundamental matrix are the same regardless of the point on the attractor at

which this fundamental matrix is based.

Coarse-graining the invariant measures on state spaces or attractors themselves and normal-

izing in various ways brings some ideas of probability and information theory back into the realm

of dynamical systems.

2.2.5 Entropy

One of the central ideas of information theory is entropy. Introduced in 1948 by Claude Shan-

non to answer the question of how many binary questions one would need to answer to determine

the state of a system, information entropy is colloquially the average amount of surprise in a

system. For example, if you have a heavily weighted coin that flips “heads” 9/10ths of the time

and “tails” only 1/10th of the time, you would expect the coin to flip “heads” and be surprised

very infrequently and unsurprised most of the time. However, if you have a fair coin that flips

“heads” 1/2 of the time and “tails” 1/2 of the time, you would not have any reason to expect

a certain outcome so the outcome of each coin flip surprises you. Having a uniform probability

distribution over the set of states results in a maximal entropy system and having more states

results in a higher maximal entropy. For instance, a fair coin flip has one bit of information entropy

1 while a fair die has log2(6) ≈ 2.58 bits of entropy. More formally, for a discrete random variable
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X with events xj occurring with probability pj , the information (Shannon) entropy is

H(X) = −
∑
j

pj log2(pj). (2.9)

The use of the logarithm in this definition allows independent events to affect the entropy

additively. That is, flipping two fair coins produces 2 bits of entropy and rolling a pair of dice has

about 5.16 bits of entropy.

Given a partition Q = {Q1, . . . , Qk} of the state space X of a measure-preserving dynamical

system (X,β, µ, ϕ), the entropy of the partition Q is defined by

H(Q) = −
k∑
i=1

µ(Qi) log2 (µ(Qi)) . (2.10)

The measure-theoretic entropy of a dynamical system (X,β, µ, ϕ) then is defined as

growth rate of the entropy of the refinement of the partition under pre-images of the flow

hµ(ϕ,Q) = lim
T→∞

1

T
H

(
T∨
t=0

ϕ−t(Q)

)
. (2.11)

where the refinement of the flow given by
∨k
t=0 ϕ

−t(Q) = {A ∩ B|A ∈ ∨k−1
t=0 ϕ

−t(Q), B ∈

ϕ−k(Q)} is defined iteratively. From this, the Kolmogorov-Sinai (measure-theoretic) entropy

of a dynamical system is defined as the supremum of the entropy of the dynamical system with re-

spect to a partition Q of X over all partitions Q. Like their topological and geometric counterparts,

information and measure-theoretic quantities like entropy can help classify dynamical systems as

chaotic as well as distinguish between different chaotic dynamical systems. A Kolmogorov-Sinai

entropy hµ > 0 indicates a system is chaotic. The Rössler attractor has measure-theoretic entropy

approximately hµ = 1.18 [15].

But what if all that we have is a single measurement from the dynamical system?

What can still be deduced? Compressing the information from the original dynamical system

by taking a single measurement and producing a time series is a transformation of the dynamical
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system. Some of this compressed information can often be extracted by reconstructing the time

series as a point cloud in higher dimensional space using Takens method of delay coordinate em-

bedding, another transformation of the original dynamical system. Entropy is not invariant under

many kinds of transformations. A feature of geometric properties like the Lyapunov exponent and

box-counting dimension is that they are invariant under certain transformation of the phase space

of the dynamical system. This is key for analyses of dynamical systems obtained from discrete

scalar valued observations of the system also known as time series.

2.3 Time Series Analysis

Time series are important as measurements from scientists, economists, health practitioners,

internet explorers, analysts of business, politics, social networks, the cosmos and beyond. Mea-

surements are also fundamental in mathematics. Sometimes it is only possible to collect a single

perhaps noisy measurement from a complicated system. This measurement might not directly

report a driving force of the system, but important information about the system can still be ex-

tracted. A sequence of single measurements is called a time series. A time series is formally a

particular outcome {xt}t∈T of a stochastic process. Recall that a real-valued random variable

X : Ω → R is a measurable function from a probability space (Ω, β, µ) to R with the Lebesgue

measure.

Def. A stochastic process is a family of random variables {Xt}t∈T indexed by a time

parameter and defined on a common probability space {Ω, β, µ} for all t ∈ T .

2.3.1 Nonlinearity

Linear time series analysis aims to model a time series by a linear combination of predictors that

can then be used for description and prediction. Auto-regressive moving average (ARMA)
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models are linear stochastic models that come in the form

xt = a0 +

MAR∑
i=1

aixt−i +

MMA∑
j=0

bjηt−j (2.12)

where ηt are random Gaussian noise that add stochasticity to the otherwise deterministic linear

process.

Predictability has often been considered a sign of determinism, and unpredictable systems

are often classified as stochastic, or random. But linear predictors, like best fitting data to a line,

are built to detect linear correlation among system variables as a function of time. Nonlinear

structures often go undetected. Linear systems of ordinary differential equations have a solutions

that are linear superpositions of exponentially damped or growing harmonic oscillations. Nonlinear

systems of ordinary differential equations can produce more complicated behavior. In particular,

drifts in system parameter values do not change the behavior of linear dynamical systems but can

dramatically alter the dynamics of a nonlinear system, as studied in the field of bifurcation theory

[32]. This suggests a need for specifically nonlinear time series analysis techniques.

A reason for the widespread use of linear statistics is that the estimates, or quantities

calculated from sample data, can be rigorously related to the population descriptor, or statistic,

given some assumptions are satisfied; this is not the case for many nonlinear estimates. Given a

sequence of measurements {sn}Nn=1, one can compute linear estimates like the mean and variance,

〈s〉 =
1

N

N∑
n=1

sn , σ2 =
1

N − 1

N∑
n=1

(sn − 〈s〉)2. (2.13)

Both of these estimates aggregate information across the time series. To get information about the

time evolution of the system, one can look at the autocorrelation at time lag τ

cτ =
1

σ2
〈(sn − 〈s〉)(sn−τ − 〈s〉)〉 =

〈snsn−τ 〉 − 〈s〉2
σ2

. (2.14)

This fluxuates periodically in τ for a periodic signal, achieving a minimum at 1
4 the period. However,
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the autocorrelation function behaves similarly for deterministic chaotic dynamical systems as well

as for random processes, decaying exponentially, making this an unideal statistic for distinguishing

between systems.

Rather than looking at the time series itself, one often performs a statistical analysis of the

frequency spectrum of the Fourier transform, {s̃k}, of the time series, {sn}, to reveal the ratios of

the major periodicities N∆t
k present in the system

s̃k =
1√
N

N∑
n=1

sne
2πikn/N . (2.15)

This power density spectrum is the Fourier transform of the autocorrelation function. Since it only

picks up linear correlation, or superpositions of simple sinusoidal signals present in a time series, it

is not advisable for nonlinear data.

2.3.2 Non-Stationarity

Many linear methods of time series analysis assume stationarity. Stationarity in general

means that all parameters relevant to the system’s dynamics are fixed and constant during the

period of observation [20]. The concept of weak stationarity requires that only up to second

order statistics, like the mean and standard deviation, be constant. A sliding window analysis

is often invoked to determine whether a sequence of samples {st}Nt=0 comes from a stationary or

non-stationary stochastic process. Typically an estimate of a statistic is computed over windows

Wi = {st}(i+1)·k−1
t=i·k for i ∈ N and k equal to the slizing window size. A change in the estimate

signals non-stationarity, or a change in the dynamics. This is called change-point or regime-shift

detection.

A major technique for nonlinear time series analysis is to begin by reconstructing the discrete

time series as a point cloud in a higher dimensional ambient space and to study properties of the

dynamics from properties of the reconstruction. A simple, yet powerful, idea is to use successive

delays of the time series itself as the further coordinates. We turn to this subject now, mentioning
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briefly some alternative methods for nonlinear time series analysis that do not rely on geometry or

phase space reconstruction include using neural networks and well-chosen sets of more complicated

basis of functions, such as radial basis functions, to model the nonlinear process.

2.4 Delay Coordinate Reconstruction

Poincaré thought of being limited to observations of continuous dynamical systems confined

to a subset of the phase space led to his construction of the return map, a discrete subsequence

of the continuous time indexing set and a reduced state space comprised of the subset. Assume a

continuous dynamical system (M,ϕ,R).

Def. A local Poincaré section for a neighborhood U of a periodic point p ∈ M is a

hypersurface S of codimension 1 in M such that for all x ∈ U there exists a t ∈ I such that

ϕt(x) ∈ S and ϕs(x) /∈ S for all st and the resulting map ρ : U → S such that x ∈ U maps to

ϕt(x) ∈ S is a diffeomorphism.

Def. The Poincaré return map for a neighborhood U of a periodic point p ∈ M and a

Poincaré section S is ρ : U → S such that x ∈ U maps to ϕt(x) ∈ S.

In recording the location and times of a single trajectory revisiting a well-chosen subset of

the phase space, the return map is a model reduction from which information about the original

continuous dynamics can still be extrapolated. Delay reconstruction is a similar idea from about a

century later in the opposite direction: given a time series, we can deduce information about the

underlying continuous dynamics by mapping the sequence of measurements into a higher dimension.

The idea of delay coordinate reconstruction was put forth in [46] by Packard, Crutchfield,

Farmer and Shaw in 1980. Working together at the University of California Santa Cruz, they

experimentally studied a complicated fluid flow by taking measurements from a leaky faucet. Their

claim was that, using successive delays of a discrete sequence of measurements from a continuous

dynamical system, they could capture key aspects of the underlying dynamics from the vectorized

data points in this m-dimensional reconstructed state space.

Def. The method of delay coordinate reconstruction takes as input a time series and
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Figure 2.2: The method of delay reconstruction takes m points from a time series that are evenly
spaced apart by τ and considers that as a single point in an m-dimensional space. We demonstrate
this process for m = 2 where the delay amount τ is represented by the yellow bar between the two
arrows pointing at the time series.

produces as output a sequence of vectors,

{x(t)}Nt=0 7→ {x(t), x(t+ τ), . . . , x(t+m · τ)}N−m·τt=0 . (2.16)

Here τ is known as the time-delay. We will say more below about the important issues of

selecting τ,m and N . Published in 1981, Takens theorem asserts that the reconstructed set of

points from the time series can be diffeomorphic to attractor of the underlying dynamical system

being measured [47]. The catch is that this diffeomorphism is only guaranteed under some technical

assumptions of genericity. These requirements are based on the dimension of the manifold and later

in the work of Sauer et al [62] the box-counting dimension of the attractor and the major peri-

odicities of the dynamical system, typically unknown features of a dynamical system from a time

series measurement prior to analysis. This schism between practice and theory demands heuristics

to determine these parameters and human intervention to implement the Takens method appropri-

ately. While this can be expensive to execute, geometric features like the Lyapunov exponents and

box-counting dimension are two properties of dynamical systems that can be extracted from time

series measurements via Takens method of delay coordinate reconstruction, making it an attractive

approach for analyzing nonlinear time series data.
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2.4.1 Delay Coordinate Embedding In Theory

We restate the main theorems in Takens original 1981 paper [47], highlighting the assumptions

on the dynamical system and genericity properties for which the results hold along the way.

Takens Theorem 1 Let M be a compact manifold of dimension m. For pairs (ϕ, y), ϕ :

M →M and y : M → R, a C2 diffeomorphism and C2 function respectively, it is a generic property

that Φ : M → R2m+1 given by Φ(ϕ,y)(x) = (y(x), y(ϕ(x)), . . . , y(ϕ2m(x))) is an embedding.

Here Takens genericity condition is that any points x ∈ M with period k ≤ 2m + 1 are

required to have distinct eigenvalues of Dϕk|x not equal to 1, no two fixed points can have the

same function value under y, and Dy|x, Dyϕ|x, . . . Dyϕ2m|x must span T ∗x (M) at fixed points x.

Takens Theorem 4 Let M be a compact manifold, X a vector field on M with flow ϕt

and p a point in M . Consider the one-parameter family of diffeomorphisms ϕα : M →M given by

restricting the continuous indexing set of ϕt to integer multiples of α. Then for a residual set of α,

the omega-limit sets ωϕt(p) and ωϕα(p) are equal.

A residual set is the complement of a countable union of nowhere dense sets [14].

Takens Corollary 5 Let M be a compact manifold of dimension m. Consider (X, y, p, α),

a vector field on M associated to flow ϕt, a function from M to the real numbers, a point on M ,

and a real number, respectively. For generic (X, y) and α, there is a smooth embedding of M into

R2m+1 mapping the omega limit set ω(p) bijectively onto the set of limit points of

{(y(ϕk·α(p), y(ϕ(k+1)·α(p), . . . , y(ϕ(k+2m)·α(p)))}∞k=0. (2.17)

This last corollary is what is needed to apply Takens theorem to time series analysis. Exten-

sions to this theory provided by Davies [25] and Muldoon [38] allow for the theory to still hold in the

face of noisy data when the underlying system is no longer a continuous deterministic dynamical

system but a stochastic process. Yet in application technicalities still abound.
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2.4.2 Delay Coordinate Reconstruction In Practice

When working with experimental data one rarely begins knowing the required information

to satisfy Takens theorem and guarantee a diffeomorphism between the reconstructed data and the

underlying attractor. The following are classical heuristics used for determining an appropriate

reconstruction dimension and delay.

2.4.2.1 False Nearest Neighbors

The false nearest neighbors algorithm due to [39]is a statistical method for determining

the efficacy of anm-dimensional reconstruction. In too low of a reconstruction dimension, projection

can cause problems with achieving a embedding. Usually one defines a neighborhood around each

data point based on the standard deviation as a regularization technique to discount outliers. One

then determines clusters of similar data points within that neighborhood. These clusters seek to

identify the points in the neighborhood that remain near each each other when the reconstruction

dimension in increased. If increasing the reconstruction dimension unfolds a projection, some points

in the neighborhood of the projection should become farther apart with the addition of this new

dimension. To capture this, one computes the ratio of the distances between a point and its nearest

neighbor when the time series is embedded in dimension m+1 versus m. This ratio is then compared

to a threshold r. If this ratio is larger, [39] call this a false nearest neighbor. Averaging the

count of false nearest neighbors over the data set and normalizing by the size of the neighborhood

one gets the statistic

Xfnn(r) =

∑N−m−1
n=1 Θ

(
|s(m+1)
n −s(m+1)

k(n)
|

|s(m)
n |

− r
)

Θ
(
σ
r − |s

(m)
n − s

(m)
k(n)|

)
∑N−m−1

n=1 Θ
(
σ
r − |s

(m)
n − s

(m)
k(n)|

) , (2.18)

where Θ is the Heaviside step function.

This algorithm takes O(km) computations where m is the reconstruction dimension and k is

the number of nearest neighbors we are averaging over at a single data point.
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2.4.2.2 First Minimum of Time-Delayed Mutual Information

The first minimum of the autocorrelation function discussed in [20] can be used to

establish a delay τ that creates maximally uncorrelated embedding dimensions, but this only ac-

counts for linear relationships between the dimensions. For nonlinear time series, [2] suggest using

the first minimum of the time delayed mutual information. Consider a partition of R into

intervals of length ε with Pi denoting the ith element of the partition.

Def. The time-delayed mutual information of a time series {sn} is a function of the

delay parameter τ given by

Iε(τ) =
∑
i,j

pi,j(τ) ln pi,j(τ)− 2
∑
i

pi ln pi (2.19)

where pi is the probability that st ∈ Pi and pi,j(τ) is the joint probability that st ∈ Pi and st+τ ∈ Pj .

The first minimum of the time-delayed mutual information identifies a time scale at which the time

series is least predictable given past information. Choosing the first minimum helps ensure that

this lack of predictability is due to the multiple state space variables governing the dynamics being

measured rather than the randomness introduced by taking a delay too large compared to the time

scale of the system. Mutual information can also be thought of as reporting the decrease in entropy

of the stochastic process {Xt} given knowledge of the stochastic process {Xt−τ}, that is

Iε(τ) = H(Xt)−H(Xt|Xt−τ ). (2.20)

Pecora and Moniz [33] introduce a statistically verifiable method for selecting the reconstruc-

tion dimension m and delay τ in tandem that incorporates the topological concept of continuity.

In their algorithm, the delay parameter τ is actually a delay vector {τk}m−1
k=1 which allows the delay

to vary for each of the m coordinates.

Garland recently demonstrated that for predictive purposes incomplete reconstructions

that do not satisfy the theoretical demands of Takens theory can actually outperform proper delay
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Figure 2.3: A wide range of representations of the Lorenz attractor can result when varying the
delay parameter in the process of delay coordinate reconstruction of time series data.

coordinate embeddings [22]. We are intrigued by this philosophy of creating lemons to make

lemonade, and exploiting the cheap algorithm implementations that result. Our need to play

fast-n-loose with requirement is ultimately driven by the task of online regime-shift detection -

classifying dynamical systems in real time from a stream time series data - where the size and

speed of the analysis is of great importance.

This brings us to the primary investigation of this thesis: How can we exploit the unique

structure of time series data to create new TDA methods better at extracting topo-

logical and geometric properties of discrete representations of attractors obtained via

Takens delay reconstruction on measurements from continuous dynamical systems?

2.5 Topological Data Analysis

Classic work spanning the 1980s through the early 2000s by Birman, Muldoon and Mindlin

recognized the need for coarse-grained approximations to provide topological signatures of chaotic

dynamical systems and time series [29], [42], [10]. Technical developments in the field of computa-

tional topology by Robins, Edelsbrunner and Carlsson led to an explosion of specialized interests
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and application in both academia and industry [54], [19], [16].

Time series data obtained from measurements of dynamical systems have been studied using

persistent homology in [27] and [18]. Recent work by Perea et al [27] uses the 1-dimensional

persistent homology of delay reconstructions to quantify periodicity. Research by Neville et al

[18] uses the 0-dimensional persistent homology of filtrations of sub-level sets to classify chaotic

dynamical systems. Persistent (co)homology has been applied to study dynamical systems to

distinguish between periodic limit cycles and fixed points [24] to identify circle structures [66] and

to detect chaotic from non-chaotic regimes [57], [30]. Most of these analyses use a Vietoris-Rips

complex construction, a simplification of the Čech construction.

2.5.1 Topological Modeling of Data

A creative aspect of data analysis is developing a model from which to glean information

about the data. Simplicial complexes are advantageous models because they represent the data

using smaller pieces whose relationship to each other can be represented by matrices in a computer.

Many analyses assume the data lies in a metric space and this provides a geometric scale-parameter

from which to model data topologically.

Common geometric scale-based constructions of simplicial complexes from point cloud data

that result in a filtration include the Čech complex, Vietoris-Rips complex, and alpha complex. The

construction of the Čech complex looks for non-trivial higher order intersections of balls of radius ε

centered at the n data points, a task that requires O(2n) computations for a set with n data points.

While the Vietoris-Rips complex simplifies this task by looking only for pairwise intersections of

balls of radius ε to produce the 1-skeleton and then constructing the clique complex from that,

this clique construction is less restrictive so there are more simplices in the Vietoris-Rips complex.

Both the Čech and Vietoris-Rips complexes can contain simplices of far greater dimension than the

dimension of the ambient space of the data set, up to dimension n−1. Partitioning the ambient space

into cells demarcating the regions nearest to each data point, the intersections formed by regions in

the ambient space equidistant to two or more data points create the cell complex structure of the
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Voronoi diagram. The alpha complex reduces the dimension of the simplicial complex constructed

by restricting the ball of radius ε centered at each data point to its intersection with that data

points Voronoi cell. The alpha complex can also be thought of a subset of the Delaunay complex,

or the nerve of the Voronoi diagram, which takes O(n log n) to compute in dimension two or less.

However, computing the Voronoi diagram is O(n
m
2 ) in dimension m ≥ 3 [44]. Current research is

to adapt computations for the two-dimensional construction to the torus and hyperbolic plane and

make three-dimensional computations tractable for large data sets [40].

Recall a presheaf with coefficients in Abelian groups is a contravariant functor from the

category of open sets of a topological space X with morphisms the inclusions to the category of

Abelian groups,

F : OX → Ab. (2.21)

The Čech cohomology of a particular open cover U of X can be define by taking as the

n-cochains maps from the intersections of n open sets in the U into Ab and as the coboundary

operator from the k-cochains to k + 1-cochains the alternating sum of the subgroups associated to

the n-cochains obtained by restriction. The Čech complex construction in topological data analysis

described above takes the nerve of the particular cover U = {B(xi, ε)}ni=1 consisting of open balls

of radius ε centered at each of the {xi}ni=1 data points. From the Borsuk-Weil Theorem, this nerve

is homotopic to the cover U [48],. Typically the constant presheaf that sends all open sets to

the same Abelian group is used to compute Čech cohomology of an open cover U of a data set,

as this corresponds to the simplicial homology of the nerve. Yet modeling data using less trivial

sheaves or cosheaves and computing the sheaf cohomology or cosheaf homology can have interesting

applications [17], [9], [55].

When a construction of a simplicial complex is dependent on a scale parameter ε that produces

a filtration, or nested sequence of simplicial complexes, F = Fε0 ⊂ . . . ⊂ Fεmax as a function of that

parameter, one can compute the persistent homology as the image of the induced map on homology
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of the inclusions in the filtration,

PHijk (F) = Im(ι
(i,(j−i))
∗ H(Fi)). (2.22)

Our aim is to do fast classification of dynamical systems from a sliding window topological

data analysis of time series. To that end, we exploit the witness complex construction that begins

by reducing the number of vertices in the construction from n to the size of a selected subset of the

data points called landmarks.

2.5.2 Witness Complexes

The strict witness complex originally introduced in [65] was a stagnant construction. Let

X be a data set in some metric space with cardinality n, {`0, . . . , `N−1} = L ⊂ X a size N subset

of the data points called landmarks, and A the n×N distance matrix. We discuss the matter of

landmark selection in Chapter 5.

Def. An edge is in the strict witness complex W∞(A) if there is a data point x ∈ X

whose two nearest landmarks are the vertices of that edge. Similarly, a k-simplex is in W∞(A) if

there is a data point x ∈ X whose k + 1 nearest landmarks are the k + 1 vertices spanning that

k-simplex. Akin to the Vietoris-Rips complex and the Čech complex, the lazy witness complex

is the clique complex on the edge set of the strict witness complex.

One can create a filtration of such complexes by dimension or alternative criteria a poste-

riori. Yet this is in a sense different than constructing a nested sequence of complexes based on

a data-set specific parameter ε. The witness complex we utilize and adapt aligns with the second

definition provided by Carlsson and de Silva.

Def. A simplex is in the nested family of witness complexes for ν ∈ Z≥0 W (A; ε, ν) if

there is an x ∈ X such that the maximum distance between x the vertices of that simplex is less

than ε more than the distance from x to its νth closest landmark.

In [71], we reintroduce the witness complex W (A; ε, 1) as a Dowker complex [12].
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Def A Dowker relation between two sets Z and Y is a subset of the product space

R(Z, Y ) ⊂ Z × Y .

Def A finite subset {z0, . . . , zn} ⊂ Z is a simplex σ in a Dowker complex if there is an

element yi ∈ Y such that {z0, . . . , zn}× yi ⊂ R(Z, Y ). This complex is homotopy equivalent to the

complex constructed using zj and {y0, . . . , yk} ⊂ Y .

The fuzzy witness complex is then the Dowker complex the following fuzzy witness

relation built using data from each x ∈ X and simplices σ ⊂ L.

Def. The fuzzy witness relation is the subset of X × L given by

RW (X,L) = {(x, `)|A(x, `) ≤ A(x, L) + ε}. (2.23)

This witness relation looks for shared witnesses near the boundaries of neighboring Voronoi cells

centered at the landmarks. The geometric ε parameter increases the “fuzziness” of the Voronoi cell

boundaries by extending the traditional straight-line boundary of the Voronoi cell by a hyperbola

shifted a distance of ε
2 from the boundary at its center, which lies on the line connecting two

landmarks. When ε = 0, the witnesses are partitioned by the Voronoi cells centered at each of the

landmarks and thus only witness the landmark to whose Voronoi cell they belong. Unless some

witnesses are exactly on the Voronoi cell boundary between multiple landmarks, there should be no

higher dimensional simplices. As ε increases, the inflated Voronoi cells no longer have intersections

of measure 0. The existence of witnesses in these non-convex regions of intersection determines the

simplices included in the witness complex. See Fig. 2.4 for illustrations of the Čech complex and

witness complex constructions.

Recall, our objective is to extract from this topological model a signature of the dynamics

in a sliding window. Changes in this topological signature should indicate a regime-shift in a time

series. Because we seek to implement this analysis in real-time, keeping computational costs cheap

and runtime low is key to our methodology of TDA for time series analysis. Balancing correctness,

consistency and cost forces us to develop a new perspective on the following questions.
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Figure 2.4: The (a) Čech and (b) witness complex require different types and amounts of compu-
tation for their construction.

How much time series data should be used for delay reconstruction? How many

subsample points should be used in witness complex model of point cloud? At what

scale-parameter do we terminate the filtration of witness complexes we are construct-

ing? How do these choices affect the topological signature? We investigate these questions

in Chapter 4.

Our data sets not only lie in a metric space, they are also derived from a dynamical system.

The point cloud we are modeling topologically is inherently not a stagnant object. Properties of

the dynamics can inform us about the underlying topology represented by the point cloud that

may be obscured by the geometry of the delay reconstruction. Assuming our discrete time series

measurements are of an attractor of a C2 continuous dynamical system, nearby points should

remain nearby. Moreover, they should travel in roughly the same direction.

Are there better definitions for scale-based simplicial complexes to model delay

reconstructed time series data? Can we utilize the extra information in the data

structure itself, the time ordering of the points? We present the family of directionally
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distorted witness complexes and statistics supporting their improvement over the standard witness

complex for modeling two-dimensional delay reconstructions of attractors from chaotic dynamical

systems data in Chapter 6.

2.5.3 Sliding Window Size

The input to our regime-shift detection pipeline begins as a stream of time series data. The

first question we must address is how much data we would like to look at. A small amount of data

will likely not cover the attractor of the dynamical system and lead to an incorrect topological

signature. A large amount of data might well cover the attractor but may be too expensive to store

or analyze.

Figure 2.5: Three 200 point trajectories of the Lorenz system show great variability in topology
based on initial conditions.

The invariant measure addresses the idea of average coverage of an attractor over time re-

gardless of initial conditions. This suggests that there is some length of time at which the entire

attractor will achieve some minimal density of coverage, even if parts are more densely covered than

others. Until observing this amount of data, the geometric variation of specific sampled trajecto-

ries based on initial condition can lead to an inconsistent topological signature for the dynamical

system. Figure 2.5 demonstrates a few of the of topologies that can occur even when increasing

the amount of data.

Figure 2.7 shows how this variability manifests in the delay reconstructions of short segments
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Figure 2.6: Two 1000 point trajectories of the Lorenz system reveal geometric variation of trajec-
tories based on initial conditions.

of the time series acquired from projecting the Lorenz system of equations onto the x-coordinate.
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Figure 2.7: Two 1000 point delay reconstructions of the x-projection of solutions to the Lorenz
system with distinct initial conditions reveal geometric variation in the topologies.

We hypothesize that when the invariant measure does not apply, not only will there be

inconsistency within a data set of topological representation, there will also be extra homology in

the point clouds where lower measure regions of the attractor remain unsampled. Some regions of

the attractor are less dense because the flow is faster there. In these cases, the one-dimensional

trajectory structure can be emphasized with a higher sampling rate. Lack of sampling due to not

observing the system for a long enough time-scale produces non-uniform density traverse to the flow

that form holes in the wings of the Lorenz attractor or along the bridge of the Rossler attractor.
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Therefore, more data will lead to less erroneous holes of this kind. For an insufficient sliding

window size, we anticipate the geometric differences between the radii of the boundary holes in

the attractor preventing us from distinguishing these erroneous holes from the meaningful ones

representing a boundary. These features are reflected in Figure 2.6. One property of the boundary

holes is that each point has at least one other point on the hole whose tangent vector is opposing

its own. This differs from the tangent vectors along an erroneous hole. This is the feature we aim

to exploit with the metric we introduce in Chapter 6 to improve the topological signature using a

smaller sliding window size and number of landmarks.

2.5.4 Landmark Selection

In order to expedite computations we use the witness complex, which uses a subsample of

the data to extract the shape of the point cloud. This subsample can be determined in a number

of ways. Previously implemented methods include selecting the landmarks randomly from the

witnesses or using a MaxMin algorithm to evenly space the landmarks amongst the witnesses.

According to such an algorithm, an initial landmark is selected at random from the point cloud X.

From that, a set L of landmarks is increased iteratively with the kth landmark to be added to the

previously selected {`1, . . . , `k−1} chosen to be w ∈ X such that w achieves

`k = argmaxw∈X{min
`i∈L

(d(w, `i))}. (2.24)

Alternatively, using the temporal ordering of the data points, we can landmarks that are

evenly spaced in time (EST). Given a point cloud {Xt}number of witnesses
t=1 corresponding to an m-

dimensional delay reconstruction of the sliding window {xt}sliding window size
t=1 with delay τ , we take

landmarks according to a down sampling rate of η witnesses per landmark so that the kth landmark

in the landmark set L is

`k = xk·η. (2.25)
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Such a definition should space the landmarks in the point cloud according to the invariant

measure. It also avoids having to recalculate the landmark set when buffering, or adding data to

a sliding window, before proceeding to slide the window. We choose to use the MaxMin landmark

selection method in this research because it lends itself to estimates that depend only on the

dimension of the data rather than the local density.

There also remains the big question of how many data points should be taken as landmarks.

Recall the number of landmarks determines the number of vertices used in the witness complex.

We want a cheap and correct method of classifying delay reconstructed time series data from com-

putable topological representations. The number of landmarks immediately limits the number

of simplices that can be created in the filtration from which the persistent homology is directly

computed. It also limits the types of detectable topology. Many research endeavors involve esti-

mating convergences in the limiting cases of infinite data and infinite time [50]. In contrast, our

objective is to approach this problem from the bottom up - starting with less to see more, finding

lemons to make lemonade.

2.5.5 Metrics on Persistent Homology

The nth dimensional persistent homology is equivalent to the set of persistence intervals,

PIn = {[εiB , εiD ]}βni=1 (2.26)

with the ith interval corresponding to the n-dimensional hole that is born at scale parameter

εiB and dies at scale parameter εiD and βn is the total number of n-dimensional holes to ever exist

in the filtration. Depending on how persistent homology is interpreted, it can take on a variety

of metrics. Persistent homology in a given dimension can be communicated through a persistence

diagram where each persistence interval [εiB , εiD ] corresponds to a point (εiB , εiD) ∈ R2+
x≤y. This

presentation is called a persistence diagram and is shown in Figure 2.8(a).

Some of the first metrics introduced on the space of persistence diagrams such as the p-
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Wasserstein metrics are matching-based, computationally expensive and challenging for statistical

analysis [36]. We instead choose to translate the information in the persistence diagram into a

cumulative functional representation of the persistent homology called the persistent homology

rank function (PRF) introduced in [67].

f : R2+
x≤y → R+, (2.27)

(a, b) 7→ |{[εiB , εiD ] ∈ PIn s.t. [a, b] ⊆ [εiB , εiD ]}| (2.28)

A PRF assigns to each point (a, b) ∈ R2+
x≤y the number of points in the persistence diagram

with εiB ≤ a and εiD ≥ b. Fig. 2.5(b)) shows the corresponding PRF to Fig. 2.5(a). The colors of

the points in the persistence diagram correspond to the multiplicity of homological features with

that lifespan, as seen in the color bar. For instance, the yellow point at approximately (1e−2, 2e−2)

in Fig. 2.5(a) represents five or more features with birth ε value of 1e−2 and death ε value of 2e−2.

These features are represented in the corresponding PRF in Fig. 2.5(b) by the light green square

in the lower left corner of the PRF. The value of this square is the number of homological features

born before 1e−2 that die after 2e−2, which includes homological features represented by the purple

point and turquoise triangle in the left side of the persistence diagram. The triangle is used to

distinguish “immortal cycles”, or cycles that do not terminate at the end of the filtration. The

PRF shown in Fig. 2.5(b) has constant value on grid squares because of our discretization which

we discuss in Chapter 4.

The span of a set of PRFs forms a subset of a Hilbert space where the distance between two

PRFs f, g is

dφ(f, g)2 =

∫ εmax

0

∫ y

0
[f(x, y)− g(x, y)]2φ(x, y)dxdy, (2.29)
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the inner product between two PRFs f, g is given by

〈f, g〉 =

∫ εmax

0

∫ y

0
f · gφ(x, y)dxdy (2.30)

and the norm of a PRF f is

||f ||φL2 =

∫ εmax

0

∫ y

0
f2φ(x, y)dxdy. (2.31)

Here φ : R2+
y → R is L1. The original motivation was to set the weight function as an expo-

nentially decreasing function of the lifepsan to make finite the infinite distances between persistence

diagrams that have “immortal cycles”, cycles that do not terminate at the end of the filtration and

are taken to have infinite lifespan, with slightly different birth times. We adopt the perspective

that immortality is improbable and set the death time of immortal features as one more than the

end of the filtration. We discuss this matter of terminating filtrations in Chapter 4. Th weighted

L2 metric on the span of a set of PRFs has the advantage that we can compute a unique point-wise

mean of a set of PRFs {fn}sn=1 with sample size s by

β(x, y) =
1

s
·

s∑
n=1

fn(x, y). (2.32)

We can then use this as a representation of the persistent homology of that set. From

this, statistics to characterize the consistency and correctness of the topological signature can be

computed. The inner product structure can also be used in further analysis, like classification via

functional principal component analysis [67]. We utilize weighted L2 metrics on PRFs as a part

of both our topological classifier Chapter 4 and our heuristics for establishing lower bounds on the

number of witnesses and landmarks to use for modeling dynamical systems from delay reconstructed

sliding windows in Chapter 5.

An alternative way to represent persistent homology is as a family of functions called per-

sistence landscapes that trace out the level sets of the PRF. This idea was introduced prior to
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PRFs in [8] and relies on the monotonicity of the PRF under a change of coordinates from (birth,

death) to (midlife time, lifespan). The L∞ norm on the space of persistence landscapes is stable

under perturbations of the data set.

Figure 2.8: A persistence diagram and the corresponding persistent homology rank function are
two ways to represent the persistent homology of a filtration.

Having these well-defined, stable and interpretable statistics is important for analyses aimed

at classification, where means often serve as a class representative and variances serve as a way to

threshold membership. Though common in the machine learning community, this technique has

not yet been applied to topological statistics. We build upon the definitions in [67], introducing the

further statistical machinery necessary and defining this topological binary classifier in Chapter 4.

2.6 Statistics for Validation Procedures

2.6.1 Receiver Operating Characteristic Curves

In Chapter 4 we introduce a topological membership test as a step towards regime shift

detection from time series using TDA. For validation of the efficacy of our topological membership

test, we use area under the curve (AUC) of receiver operating characteristic (ROC) curves [26].

A Receiver Operating Charateristic (ROC) curve plots the true positive rate (TRP),

called sensitivity, against the false positive rate (FPR), called specificity, as a parameterized
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curve for binary classifications where the classifier is parameterized by z ∈ R+. A good classifier

has TPR growing significantly faster than FPR. Therefore, a successful classifier would have an ROC

curve that slowly traces the left and top perimeter of the TPR × FPR domain as z is increased;

a bad classifier would have an ROC curve that is near or below the diagonal. The information

presented by the ROC curve can be summarized by the area under the curve (AUC). A higher

AUC indicates a better classifier. A near perfect classifier has AUC ≈ 1, a classifier that is

essentially a coin flip has AUC ≈ 0.5, and a classifier that misclassifies more than it correctly

classifies has AUC < 0.5.

The statistical analysis we perform in Chapter 4 reveals a wide discrepancy in the stability

and success of our topological binary classifier over the parameter space of the witness complex

construction. We use weighted L2 norms on PRFs to experimentally investigate how the topology

detected by a filtration of witness complexes is altered by changing the number of witnesses and

number of landmarks. This experimentation informs a heuristic we introduce in Chapter 5 to

establish the size of the model.

2.6.2 Hierarchical k-Clustering

For validation of the improvements on persistent homology achieved by the new witness

relation for dynamical systems data we introduce in Chapter 6, we present a set of novel statistics

based on the hierarchical 2-clustering of the persistence intervals as situated in the persistence

diagram. We review the general method of hierarchical clustering now.

Hierarchical 2-clustering is a technique that begins with each data point in a unique cluster

and iteratively assigns the data points to fewer and fewer clusters, ultimately terminating in two

clusters of data points that produces the maximal distance between any possible two clusters.

We use a Euclidean-based single-linkage heirarchical clustering algorithm in the scipy package of

python. In general, hierarchical k-clustering looks for the minimal Hausdorff distance between all of

the clusters and combine the clusters that achieve this minimal distance, repeating to successively

reduce the number of clusters until there are k clusters. This is akin to reporting the last k



37

components when computing the β0 persistent homology. In our case, we are considering the

set of persistence intervals as data points in R2 with the Euclidean metric and clustering the

persistent homology itself until we only have two clusters. The separation of persistence intervals

in the persistence diagram in this way can serve to communicate what of the persistent homology

is signal and what is noise. We take the number of points in the cluster containing the longest

living homological feature as the “signal” cluster representing the number of global one-dimensional

homological features, and the rest of the persistent homology as “noise” representing the local

homology that is short-lived.
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Figure 2.9: A Receiver Operating Characteristic curve reports the true positive rate and false
positive rate of a classifier as a function of the classifier threshold value.
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Figure 2.10: Hierarchical 2-clustering of the points in the persistence diagram separates the “signal”
and “noise” in the persistent homology. The“signal” is represented by the green points in the
persistence diagram and also contains the maximal lifespan feature denoted in blue. The “noise”
is colored red.



Chapter 3

Datasets

3.1 Synthetic Data Sets

We establish our methodology on synthetic data generated as numerical solutions to systems

of equations modeling real-world chaotic phenomena.

3.1.1 2D Delay Reconstructed Lorenz Attractor

We generate 1,000,000 data point time series from the Lorenz system in Equation 2.1 with

time step 0.01 with initial condition (1,1,1) for 10,000 time units by first numerically integrating

the ODEs in the full three dimensional state space using the ode45 integrator in MATLAB. We

project this numerical three dimensional solution onto the x-coordinate to obtain a time series of

the chaotic Lorenz data set.

Following the philosophy introduced in [23], we delay reconstruct these time series in two

dimensions using the first minimum of mutual information, τ = 18 time steps, as our choice of

delay. This is shown in Figure 3.3.

As shown in Figure 3.3(a), for delay less than the first minimum of time-delayed mutual

information, the reach of the attractor is small. Figure 3.3(b) shows a reconstruction using delay

parameter equal to the first minimum of time-delayed mutual information. Now the holes in the

Lorenz butterfly wings are round and the attractor is well-extended off the diagonal. As the delay

increases beyond the first minimum of time-delayed mutual information, the attractor folds over

itself. Figure 3.3(c) shows this projection eradicating the two main one-dimensional homological
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Figure 3.1: (a) A numerical 3D solution to the Lorenz system of equations approaches the strange
attractor. (b) The projection of the numerical 3D solution to the Lorenz system of equations onto
the x-coordinate produces a time series.

features. For delay much greater than the first minimum of time-delayed mutual information, four

lobes with no one-dimensional homology emerge. This is shown in Figure 3.3(d).

3.1.2 2D Delay Reconstructed Rössler Attractor

We generate 1,000,000 data point time series from the Rössler system Equation 2.2 with time

step 0.08, initial condition (1,1,1) and 80,000 time units by first numerically integrating the ODE

in the full three dimensional state space using the ode45 integrator in MATLAB. We use this larger

time step so that the first minimum of average time-delayed mutual information is the same for

both the Lorenz and Rössler time series. We project this full 3D solution onto the x-coordinate to

obtain a time series of the chaotic Rössler data set, as shown in Figure 3.4.

We delay reconstruct these time series in two dimensions using the first minimum of mutual

information, τ = 18 time steps, as our choice of delay. This is shown in Figure 3.6.
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Figure 3.2: The time-delayed mutual information of the x-projection of a solution to the Lorenz
system of equations is plotted as a function of the delay. The first minimum denoted with a dashed
red line identifies a delay parameter for Takens delay reconstruction that results in maximally
independent coordinates.

Figure 3.6(a) shows that for delays less than the first minimum of time-delayed mutual

information, the attractor is still close to the diagonal which leads to small reach and short-lived

persistent homology. Figure 3.6(b) shows a reconstruction using delay parameter equal to the first

minimum of time-delayed mutual information. Here the hole in the center of the Rössler attractor

appears circular in the delay reconstruction. As the delay increases beyond the first minimum

of time-delayed mutual information, the attractor fold over itself. Figure 3.6(c) shows how this

projection contains no one-dimensional homological features. As the delay is further increased past

the first minimum of time-delayed mutual information, the reconstructed Rössler attractor cycles

through these representations. Figure 3.6(d) shows how the attractor can re-unfold; however, the

projection can distort the homology we are seeking to detect.
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Figure 3.3: Two-dimensional delay reconstructions of the x-projection of a solution to the Lorenz
system of equations using a variety of delay parameters reveal a variety of topological and geometric
representations of the Lorenz attractor.
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Figure 3.4: (a) A full 3D solution to the Rössler system of equations approaches the strange
attractor. (b) The projection of the full 3D solution to the Rössler system of equations onto the
x-coordinate produces a time series.

3.1.3 2D Delay Reconstructed Signal of Brunel Neuronal Network

The Brunel model for neuron firing introduced in [7] is a leaky integrate-and-fire model on

a sparsely connected network whose vertices represent excitatory and inhibitory neurons. The pa-

rameters describing the behavior of the excitatory and inhibitory neurons are allowed to differ from

each other. When the model parameters are set as discussed in [28], this results in four dynamically

distinct regimes of global and individual neuron behavior emerge over a two-dimensional parameter

space of the model.

The first parameter we denote by I. It stands for the ratio of the frequency of the external

input signal to the frequency of neurons reaching the firing threshold in the absence of an external

signal. The second parameter we denote by G and it represents the relative strength of inhibitory

synapses. When I = 2, G = 3, the neurons fire regularly with high frequency and are almost fully



45

0 20 40 60 80 100
Delay (time steps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 M
ut

ua
l I

nf
or

m
at

io
n

Rossler X-Projection Time Delayed Mutual Information

Figure 3.5: The time-delayed mutual information of the x-projection of a solution to the Rössler
system of equations is plotted as a function of the delay. The first minimum denoted with a dashed
red line identifies a delay parameter for Takens delay reconstruction that results in maximally
independent coordinates.

synchronized; this is called the synchronous regular regime (SR). When I = 2, G = 5, the neurons

fire irregularly and global activity remains stationary; this is called the asynchronous irregular

regime (AI). WhenI = 4, G = 6, the neurons fire irregularly and produce fast oscillations in the

global activity; the neuron firing rate is lower than global frequency. When I = 1, G = 4.5, the

neurons fire irregularly at very low rates and produce slow oscillations in the global activity. These

last two regimes are called the fast and slow synchronous irregular (SI) regimes, respectively. Figure

3.7 shows the average excitatory neuron voltage in each of these regimes.

We can get a single measurement of the system by taking an average of the excitatory neuron

voltages at a given time.

We plot the mutual information in Figure 3.8 of this signal in each of the four regimes.

Because there is only a clear minimum of mutual information for the I = 4, G = 6 regime data
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Figure 3.6: Two-dimensional delay reconstructions of the x-projection of a solution to the Rössler
system of equations using a variety of delay parameters reveal a variety of topological and geometric
representations of the Rössler attractor.
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Figure 3.7: Time series of the average excitatory neuron voltage of the sparsely connected Brunel
neuronal network in four dynamically distinct regimes: (a) I = 1, G = 4.5, (b) I = 2, G = 3, (c)
I = 2, G = 5, (d) I = 4, G = 6.

set, seen in Figure 3.8 (d) at τ ≈ 200, we choose to delay reconstruct all data sets with τ ≈ 200.

Visual inspection of the data in Figure 3.9 shows that all regimes are well-extended from

the diagonal in the two-dimensional delay reconstruction when using a delay of 200 time steps. In

Figure 3.9, the color gradient represents time. The shifting, as well as expansion and contraction,

of the triangular cycles in the delay reconstruction is a sign of non-stationarity of this signal.

3.2 Experimental Data

3.2.1 2D Delay Reconstructed Music Instrument Recordings

Voltage recordings of the note A440 played on a viol and clarinet using a Sony ICD-PX312

digital voice recorder sampling at 44.1 kHz provide real world, near-periodic data sets we seek to

classify using TDA on sliding windows from the time series. These sliding windows are chosen to be
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Figure 3.8: Mutual information between the average excitatory neuron voltage of the sparsely
connected Brunel neuronal network and a delayed version of itself, as a function of the delay, in
four dynamically distinct regimes: (a) I = 1, G = 4.5, (b)I = 2, G = 3, (c) I = 2, G = 5, (d)
I = 4, G = 6.

evenly spaced across the recording. We set the delay to be π
f where f is the fundamental frequency

of the note we are recording in units Hertz. This is irrationally proportional to the frequency f

of the musical note we are embedding, satisfying the genericity conditions of Takens theorem, in

particular avoiding twice the period of any subharmonic.

To explore one-dimensional persistent homology, we chose to delay reconstruct in two di-

mensions. We will likely not have an embedding due to projection causing false crossings. These

can create one-dimensional homological features in the filtration of witness complexes modeling the
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Figure 3.9: Two-dimensional delay reconstructions of 10,000 points the average excitatory neuron
voltage signal from the sparsely connected Brunel neuronal network using a delay of 200 time steps
in four dynamically distinct regimes: (a) I = 1, G = 4.5, (b) I = 2, G = 3, (c) I = 2, G = 5, (d)
I = 4, G = 6. The color gradient represent the temporal ordering of the data points.

data. We believe that the interaction between the fundamental tone, subharmonics and additional

frequency content of a musical instrument leads to these interesting geometric structures that can

be used to distinguish between musical instrument recordings, even though the delay reconstruction

is not an embedding [23]. Figure 3.10 shows the viol and clarinet recordings, highlighting in red

the sliding windows used for the delay reconstructions depicted below.
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Figure 3.10: A live recording of a musical instrument, such as the viol (left) and clarinet (right),
can be segmented into sliding windows and then delay reconstructed using τ = π

f where f ≈ 440Hz
to produce a two-dimensional point cloud for topological data analysis.



Chapter 4

Topological Membership Testing

Our approach to time series analysis is to delay reconstruct a window of the time series

data and compute the L2 norm of the PRF as a topological signature for that window of data.

Changes in this topological signature during a sliding window analysis can then be used to detect

change-points in the time series when the underlying dynamics being measured shifts. To this end,

we introduce a topological binary classifier on sliding windows of time series data. This reflects

regime-shift detection in time series analysis where the binary classification between “Member

of Current Regime” and “Not Member of Current Regime” is being repeatedly asked [56]. In

particular, we are not assigning each sliding window sample to a single class that best represents

it; e.g. a sample can be assigned as a member of both the Lorenz class and Rössler class. To make

fair comparisons between PRFs from distinct samples, we first introduce normalizations of the

filtration of witness complexes and the PRF itself. We then show that the unweighted L2 distance

between a sample PRF and a mean PRF representing a class introduced in [45] can serve as a good

topological signature to test class membership for some subset of the parameters involved

in constructing the witness complex. We further explore affects of parameter selection on the

topology of the filtration of witness complexes in Chapter 5.

4.1 Terminating the Filtration

For filtrations modeling a finite data set based on a scale parameter ε, as with the fuzzy witness

relation in Equation 2.23, it could make sense to stop computations either at an εmax value when
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the filtration has stabilized as a clique on all landmarks or at an ε when the number of simplices in

the filtration becomes too computationally expensive to construct and store. For example, for the

fuzzy witness complex construction a choice of εmax greater than the diameter of the data set will

always result in the complete complex on the set of landmarks. The persistent homology reported

by such a filtration can obscure the importance of perhaps interesting and meaningful topology of

the data. This can be the case when the portion of the filtration when non-trivial homology exists

is small in comparison to the duration of the filtration. Exploring ε greater than the theoretically

motivated τ
2 [50] can provide information about the scale of the topological features in the data.

Yet increasing ε increases the number of simplices in the model. This motivates us to introduce a

method of terminating filtrations of simplicial complexes based on a topological property limiting

the size of the model.

Heuristic 1. Terminate a filtration of fuzzy witness complexes at εmax when a simplex of

dimension kmax enters the filtration.

For witness complexes, this is equivalent to when there exists a witness that witnesses kmax+1

landmarks. Consider an m-dimensional data set Γ = {wt}Nt=1, here considered as a delay recon-

structed time series. Let L = {`i}Mi=1 where L ⊆ Γ is the subset of the data set chosen as landmarks.

Concretely, we set

Heuristic 2. εmax = minw∈Γ{d
(
w,L\{lw(0), . . . lw(kmax)}

)
− d(w,L)}

where `w(j) is the jth closest landmark to w. This allows a way to directly limit the computational

complexity.

Suppose L is chosen according to a MaxMin algorithm with density ρ approximated by ρ ≈ δm

where δ = mini 6=jd(`i, `j). Let ∆ ≈ maxi 6=jd(`i, `j) approximate the diameter of the data set. The

MaxMin algorithm aims to evenly space the landmarks within the state space amongst the data.

For some range of εmax, we expect the number of landmarks within a ball of radius εmax to scale

according to

Estimate 1. kmax ≈ ρ · εmmax.
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This range is when the homology created in the witness complex corresponds to the fleshing

out of the local topology rather than the revelation of the global topology of the point cloud.

Some local topological features include the star of a vertex, or set of simplices that contain

a vertex [11]. The stars of nearby vertices can connect along the links, or the faces of the simplices

in the star that do not intersect the vertex. This can create geometrically small, and often short

lived, persistent homology in the filtration. For example, two vertices that have edges to the same

set of vertices but not to each other will create a plethora of one-dimensional homology. As ε

increases, the stars of vertices expand and it is likely that these two vertices with similar neighbors

who are not themselves neighbors will become neighbors. Because this phenomenon occurs across

the point cloud approximation of the attractor, a large number of short lived features enter the

filtration in a short amount of time. A high PRF value near the diagonal indicates that the witness

complexes are capturing these local topological features across the point cloud.

Figure 4.1(a) shows an example of a witness complex capturing this local topology. Motivated

by computational efficiency, robustness and interpretability, we instead seek a coarse-grained topo-

logical signature. If a filtration of witness complexes were to terminate when the local homology

was only beginning to be captured, the corresponding persistent homology would not identify the

geometrically large-scale homological features that have been formed among the more fine-grained

features.

To this end, [1] suggests picking εmax = r · ∆ with constant of proportionality r ∈ [0, 1],

yet choosing this r largely remains an art. In particular, computations can become prohibitively

expensive with high density data. Alternatively, our heuristic terminates the filtration in terms of

an upper bound of the size of the model, which limits the computations directly.

Heuristic 3. Select kmax explicitly, allowing εmax to vary with each data set.

This corresponds to

Heuristic 4. kmax ≈ ρ · (r ·∆)m.

A discrepancy between the ambient dimension m in which the time series data is delay reconstructed
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Figure 4.1: Witness complexes built on two dimensional delay reconstruction of 2000 points from
the voltage recording of the note A440 (f ≈ 440) on a Steinway grand piano using 80 landmarks
(a) Early in a filtration simplicial complexes can capture local topology not reflective of the global
topological structure. (ε ≈ 0.008) (b) Later in the filtration simplices can continue to be added
to complexes in the filtration after the global topology has been captured that do not affect the
homology. (ε ≈ 0.01
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and the box-counting dimension Dbox of the attractor of the underlying dynamics can cause εmax

as solved for using Estimate 1 to be low. However, we may not know the attractor dimension.

Variations in density of the data set mean certain local topological structures, like an m-dimensional

neighborhood, will appear around certain vertices in L prior to others. Further, when the simplicies

are still fleshing out interior regions of the data set, there should be an ε-range in the filtration

when adding simplicies predominantly acts as a coarse-graining of the pre-existing simplicial model.

During this ε range of the filtration, the newly added simplices span regions of the phase space

already covered by smaller simplices that entered the filtration earlier. Higher dimensional cliques

form to represent regions of the attractor previously represented by connected acyclic collections of

lower dimensional cliques. See the witness complex in Figure 4.1(b) for an example of such coarse-

graining. The red triangles are the two-simplices added to the filtration at the current ε ≈ 0.01

while the blue triangles are the two-simplices that entered the filtration earlier for smaller ε. Notice

how the larger red triangles are generally covering a set of smaller blue triangles. As ε increases,

this coarse-graining will no longer occur as the red triangles begin to cover the lack of data points

that create the four major one-dimensional homological features.

During the coarse-graining ε range of the filtration, the lower dimensional homology of the

complexes should remain stable. This encourages us to suggest overestimating when choosing kmax

in Heuristic 3 via Heuristic 4, mindful of the costs of a larger filtration in later computations. Note

also that one can only compute persistent homology up to dimension kmax − 1 as all kmax cycles

will be reported as homological features since there are no kmax + 1 simplices in the filtration.

Figure 4.2 shows how r scales with kmax in practice for witness complexes built on 2000

witnesses and 100 landmarks modeling two dimensional delay reconstructions of musical instrument

voltage recordings at 44.1 kHz (clarinet, viol) and and 10,000 witnesses and 100 landmarks modeling

full three dimensional solutions to classical chaotic (Lorenz, Rössler). The viol, clarinet, Lorenz and

Rössler point clouds have (∆, ρ−
1
m ) ≈ (2.2, 0.12), (1.6, 0.1), (1.2, 0.13) and (1.2, 0.13), respectively.

The similarity observed in Figure 4.2 of εmax across samples from the same data sets using

this heuristic supports that terminating a filtration of witness complexes by the first appearance of
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Figure 4.2: An increase in εmax from roughly 3% to 12% of the diameter is observed as kmax,
the dimension of the maximal simplex upon terminating the filtration, is increased from 5 to 20
for filtrations modeling full three dimensional solutions to classical chaotic dynamical systems and
two dimensional delay reconstructions of musical instrument recordings: Lorenz (red), Rössler
(blue), clarinet (yellow), viol (purple). Each point corresponds to a different point cloud from

that class of data. The viol, clarinet, Lorenz and Rössler point clouds have average (∆, ρ−
1
m ) ≈

(2.2, 0.12), (1.6, 0.1), (1.2, 0.13) and (1.2, 0.13), respectively.
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a top dimensional simplex results in a consistent representation. It also suggests that the average

value of εmax of a set of PRFs contains useful information about the geometric scale of the data.

This is different than computing the kmax-skeleton of the witness complex across a range of

ε; rather it provides a means of automating the choice of when to terminate a filtration of witness

complexes. Automating εmax according to this local topological heuristic allows us to compare

PRFs with slight variations in their geometric domain yet similar local topological structures in

the filtrations they represent, a coarse-graining in the spirit of topological data analysis. Control of

algorithm termination via this topological knob in the witness complex model allows for computa-

tional efficiency independent of knowledge of the scale of the data or the desired scale of identifiable

features.

4.2 Preprocessing PRFs for Comparison

We introduce the heuristic of rescaling all PRFs so that they share extremal coordinates of

(0, 0), (0, ε̂), (ε̂, ε̂) where ε̂ is such that a PRF, f , reporting a single homological feature that lives for

the entire duration of the filtration has weighted L2 norm ||f ||φ = 1. For instance, when the weight

function is φ1 = φ(x, y) = 1, then ε̂ =
√

2. This rescaling is a preprocessing step that addresses

missing data, allowing us to compare PRFs and infer global topological information from a simple

statistic like the norm.

We also discretize the region of R2+
y≥x over which the PRF is defined into a grid of squares

and assign to the ith grid square the value of the PRF at its lower right corner, which results in

an overapproximation. For a PRF f , we denote this value by f (i). This produces a set of features

that can be used in machine learning algorithms.

4.3 Variances of PRFs

We compare two methods of computing the variance of a set of persistent homology rank

functions (PRFs) {fk}Nk=1 using a weighted L2 metric on the Hilbert space spanned by a set of

PRFs. The first method begins by computing the weighted L2 distance between each sample PRF
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fk and the mean PRF β given by Equation 2.32, and then averages the set of squared distances,

providing the weighted L1 norm of the point-wise variance function. In what follows, the notation

f (i) refers to the ith grid square in the our discretization of the PRF as discussed in Chapter 4.

σ2({fk}Nk=1) =

∑N
k=1

((∑
(i)

(
f

(i)
k − β

(i)
)2
· φ(i)dA

) 1
2

)2

N − 1
(4.1)

The second method begins by computing the variance locally, providing a point-wise variance

function on R2+:

V(i)({fk}Nk=1) :=

∑
k

(
f

(i)
k − β

(i)
)2

N − 1
, (4.2)

and then computes the weighted L2 norm of this point-wise variance function:

||V({fk}Nk=1)||φL2 =

∑
(i)


∑N

j=1

(
f

(i)
k − β

(i)
)2

N − 1


2

· φ(i)dA


1
2

(4.3)

To see this relationship between these methods, consider

σ2 =

∑N
k=1

((∑
i

(
f

(i)
k − β

(i)
)2
· φ(i) · dA

) 1
2

)2

N − 1
=

∑N
k=1

∑
(i)

(
f

(i)
k − β

(i)
)2
· φ(i) · dA

N − 1

=

∑
(i)

∑N
k=1

(
f

(i)
k − β

(i)
)2
· φ(i) · dA

N − 1
=
∑
i

∑N
k=1

(
f

(i)
k − β

(i)
)2

N − 1
· φ(i) · dA = ||V||φL1 .
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4.3.1 Functional Fano Factors

One concern is that some multiple of the variance of the distance to mean alone is not an

appropriate statistic to threshold membership to a given regime. Because our mean is a function,

there are a variety of ways that a sample can differ from the mean. Often mean and variance are

not independent, though this is the case for normally distributed random variable. One way to

address the lack of independence for single-variable statistics is to use the Fano factor [64],

F =
σ2

µ
.

The Fano factor acts as a unitless ratio of noise-to-signal, comparing a stochastic process to

a Poisson process which has a Fano factor equal to one. A stochastic process with Fano factor less

than one is called sub-Poisson, and suggests a low level of variability within the data. A process

with Fano factor greater than one is called a super-Poisson and indicates high variation. Here

our data is functional and we are looking to do statistics on a set of PRFs reporting the persistent

homology from a filtration of witness complexes. We introduce two extensions of the idea of a Fano

factor to PRFs as ways of capturing the scaled variation in the data.

Global Fano Factor

The global functional Fano Factor is the the weighted L2 norm of the point-wise variance

function, uniformly scaled by the weighted L2 norm of the mean PRF βk:

Fglo({fk}Nk=1) :=
∑
(i)

∑N
k=1(f

(i)
k − β

(i)
)2

(N − 1)

(∑
(i)

(
β

(i)
)2
φ(i)dA

) 1
2

(4.4)

One way this definition is limited is that it aggregates the homological information across the

range of the filtration. Two PRFs can have the same weighted L2 norm yet represent different types

of persistent homology. The idea of persistent entropy recently introduced in [43] measures of

variation in the types of persistent homology as distinguished by lifespan. A PRF with high

persistent entropy would have a plethora of homological features with a wide range of lifespan



60

whereas a PRF with low persistent entropy would have a lot of features with the same lifespan.

While data sets representing both of these situations could have equal weighted L2 norms of the

mean and equal weighted L2 point-wise variance, and thus equal global functional Fano factors, the

lower persistent entropy data set would have greater local variability whereas the higher persistent

entropy would have smaller local variability yet this variability would be spread across the PRF.

We would like to distinguish between these two cases. This motivates our definition of the local

functional Fano factor.

Local Fano Factor

The local functional Fano factor, F loc
k : {fk}Nk=1 → R, reveals the variance of a set of

persistent homology rank functions (PRFs) as a function of observation window (a, b) ∈ R2+ in a

filtration.

F loc({fk}Nk=1)(i) :=
N∑
k=1

(
f

(i)
k − β

(i)
)2

(N − 1)β
(i)

, (4.5)

||F loc({fk}Nk=1)||φL2 :=

∑
(i)


∑N

k=1

(
f

(i)
k − β

(i)
)2

(N − 1)β
(i)


2

φ(i)dA


1
2

(4.6)

This allows us to scale the variance according to the local mean. If there are some observation

windows for which the variance is high yet the mean number of observed homological features is

also high, we consider this of less importance than if the variance is high yet the mean number

of observed homological features is low. This follows the philosophy that if there are only two

features, each feature is very important in conveying the homology. Rather if there are 50 features,

a variation of say 10 features still communicates the order of magnitude of the homology effectively.

We see this situation arise often in persistent homology computations, where an abundance of short-

lived homology is born and dies in a concentrated interval of the filtration. The sheer amount of

local topology captured can contribute to a large weighted L2 norm that can minimize important

variability in the number of smaller, long-lived homological features when computing the global
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functional Fano factor. Taking these long-lived features to be our topological signal, the short-lived

features be come noise in our topological representation of the data, the weighted L2 norm of a

PRF. Using the local functional Fano factor fixes this misrepresentation of the noise-to-signal ratio

by separating the variability in the signal from the variability in the noise, and weighing them

accordingly.

4.4 Family of Topological Classifiers

In our classification, we train on the PRFs {fn}sn=1 obtained from s sliding windows from each

data set by computing the mean PRF as a representation of that class. We then test membership

to each class on s additional sliding windows from each class by comparing the L2 distance of the

PRF gn associated to a sliding window to the representative mean PRF β of an instrument class.

We parameterize this membership test by setting a threshold distance away from the representative

mean PRF β a sample PRF gn can be to still be classified as a member of that instrument class.

We report this threshold distance in units z where z is the multiple of the weighted L2 norm of the

point-wise variance function, σ2.

dφ1(gn, β) ≤ z · σ2, (4.7)

where σ2 =
1

s− 1

s∑
n=1

||fn − β||2φ1 . (4.8)

Experimentation revealed little distinction between the choice of threshold units in practice.

We choose to parameterize our family of classifiers based on σ2, the weighted L2 norm of the point-

wise variance function, rather than the global or local functional Fano factor, but include their

introduction for their potential contribution to future topological data analyses.
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4.5 Experimental Results

We explore the strength of these classifiers over the (number of witnesses, number of

landmarks) parameter space as reported by the area under the curve (AUC) of the Receiver

Operating Characteristic (ROC) curves. Recall that a classifier with an equal likelihood of correctly

and erroneously assigning membership has an AUC ≈ 50% while a perfect classifier has an AUC ≈

100%.

In the tables below, we present the area under the curve (AUC) of the Receiver Operator

Characteristic (ROC) curves for the family of topological binary classifiers. Each table represents a

binary classifier testing membership to a certain data set, e.g. Lorenz membership. The rows of the

tables represent a variety of number of witnesses, or amount of delay reconstructed data points

representing the dynamics. Note the sliding window size must include m×τ more points than the

number of witnesses in order to create the number of witnesses delay reconstruction vectors

comprising our higher dimensional point cloud. The columns of the tables represent a variety in

the number of landmarks used in our model, which serve as the vertices in the filtrations of

witness complexes.

Recall that an AUC ≈ 1 signifies a classifier that is not only able to correctly classify Mem-

bership versus non-Membership for a single threshold value but is robust with respect to changing

this threshold value. That is, the data sets being distinguished are extremely well-separated and

clustered tightly around their own means. Lower AUCs less than or equal to 0.5 suggest the

topological binary classifier is attempting to distinguish data sets which are not well-separated or

well-represented by their means. Either the mean representations, and the data sets themselves,

themselves are too similar with respect to this topological signature or the variance within a data

set is too high for this topological signature to be distinguishing.
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AUCClar

|�|, |L| 10 50 100 500
500 1.00 0.34 1.00 0.34
1000 0.67 0.34 1.00 0.44
4000 0.00 1.00 1.00 0.78
5000 0.00 0.00 1.00 1.00AUCClar

Table 1: AUC: Clarinet Membership

1

|�|,|L| 10 50 100 500
500 1.00 1.00 0.33 0.17
1000 1.00 1.00 0.00 0.67
4000 0.83 1.00 1.00 1.00
5000 1.00 1.00 0.33 1.00AUCViol

Table 1: AUC: Viol Membership

1

Figure 4.3: The AUC of ROC for (a) Clarinet Membership (b) Viol Membership over the (number
of witnesses, number of landmarks) parameter space.

4.5.1 Distinguishing Musical Instruments

We first demonstrate the feasibility of this topological classifier for distinguishing simple

periodic signals on experimental voltage time series acquired from live recordings of the same

note on a clarinet and a viol. Using the same delay parameter irrationally proportional to the

fundamental frequency of the recorded musical note and reconstructing in two dimensions, the

present subharmonics reveal themselves as projections of cycles which would be embedded on the

surface of a torus in a higher dimension, creating extra homology. Our intention is to extract

this global topology of the delay reconstruction as a coarse-grained topological description of the

dynamics via the weighted L2 norm of the mean PRF, and distinguish between music instrument

recordings based on differences in this large-scale topology. We take a sample size of 10 sliding

windows from each music instrument recording to train our classifier and compute a mean PRF.

We then test our classifier against 10 sliding windows from within the class and 10 sliding windows

from the other instrument class. We terminate the filtrations of witness complexes at kmax = 9.

Tables 4.3 (a) and 4.3(b) show that we observe perfect membership testing for both the

viol classifier and clarinet classifier at four pairs of (|Γ|,|L|) parameter values: (500, 10), (4000,

50), (4000, 100) and (5000, 500). We anticipate that, despite successful classification,

filtrations of witness complexes with (|Γ|, |L|) = (500, 10) and (|Γ|, |L|) = (5000, 500)
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fail to capture an accurate global topological signature for the data. This is validated

in our later experimentation in Section 5. Heuristic 5 presented in Chapter 5 selects (|Γ|, |L|) =

(4000, 100).

Counterintuitively, using all 500 witnesses as landmarks to model the delay reconstructed

sliding window of time series data does not provide better classification. In fact, the Čech complex

on 500 data points results in a poor classifier. This can be seen in Table 4.3(b) with an AUC ≈ 33%

and Table 4.3(a) with an AUC ≈ .17. We expect that this is because the kmax cliques in the Čech

complex span a smaller proportion of data set than those where the number of landmarks is

much less than the number of witnesses, and terminating filtrations for a fixed kmax to fix

computational costs prevents such filtrations from capturing the distinguishing global topology.

That is, the persistent homology is only reporting noise since the filtration was not able to explore

topology at the relevant geometric scales under the cost ceiling we impose.

4.5.2 Classifying Chaotic Dynamical Systems

Many methods exist for distinguishing between periodic dynamical systems or classifying

whether a system is periodic or chaotic. Yet distinguishing between time series measurements from

different chaotic dynamical systems is a much more challenging problem. Nuanced descriptions like

the Lyapunov exponent and box-counting dimension that tease apart the mechanism and result

of chaos require convergence in a limit and therefore a lot of data. We now apply our topological

classifier to distinguishing between the classical continuous chaotic dynamical systems of Lorenz

and Rössler for a range of number of landmarks and number of witnesses in the construction

of witness complexes. We train our classifiers on PRFs corresponding to 10 sliding windows of

delay-reconstructed synthetic time series data created by projecting full solutions these systems of

equations onto their x-axes. We test our classifiers on 10 samples within the class and 10 samples

from the alternative data set.

According to the heuristic presented in Section 4.1, we set kmax = 15. Thus filtrations built

upon 16 landmarks will certainly terminate in the complete complex on 16 vertices. Because of this,
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|�|, |L| 16 25 50 100 200 500
500 0.91 0.81 0.73 0.41 0.27 0.58
1000 0.86 0.75 0.64 0.68 0.31 0.42
2000 0.81 0.54 0.65 0.71 0.49 0.17
5000 1.00 0.88 0.79 0.68 0.95 0.94
10000 1.00 1.00 0.80 0.93 0.92 1.00
20000 1.00 1.00 1.00 0.77 0.95 0.94
40000 1.00 1.00 1.00 0.20 0.72 0.98lorenzAUC

Table 1: AUC: Lorenz Membership

1

|�|, |L| 16 25 50 100 200 500
500 0.76 0.82 0.67 0.62 0.75 0.54
1000 0.49 0.54 0.80 0.91 0.91 0.73
2000 0.49 0.52 0.73 0.99 0.90 0.88
5000 0.32 0.72 0.52 0.84 0.79 0.91
10000 0.94 0.81 0.71 0.48 0.84 0.98
20000 0.70 1.00 1.00 0.57 0.53 0.80
40000 0.00 0.30 1.00 0.90 0.62 0.98AUCros

Table 1: AUC: Rössler Membership

1

Figure 4.4: The AUC of ROC for (a) Lorenz Membership (b) Rössler Membership over the (number
of witnesses, number of landmarks) parameter space.

we expect the persistent homology to die early and have a short lifespan relative to the filtration

length. Whether or not the topological features reflective of the dynamics can be captured by

such few landmarks is largely a property of the data set. Increasing the number of landmarks

increases the resolution and the amount features detectable by persistent homology, of which there

are infinite for fractal chaotic data like the Lorenz and Rössler. For finite data sets, the number

of landmarks is bounded above by the number of witnesss and for too few witnesses, the

desired descriptive scaling properties of the attractor also might not be extractable for the given

range of topological perspectives. Counter to our colloquial description of the two chaotic systems,

complications arise when a trajectory of the Lorenz system is solved only long enough to visit one

butterfly wing or a trajectory of the Rössler system goes over the bridge just as frequently as it

goes around the equilibrium in the xy-plane, creating one dominant hole in the former case and

two in the latter.

Like with the musical instrument recordings, we see that modeling the delay reconstructed

chaotic time series by filtrations of Čech complexes on 500 data points forms the basis of poor

classifiers with AUC ≈ 0.58, 0.54 for Lorenz and Rössler, shown in Tables 4.4 (a), (b), respectively.

Yet unlike the periodic musical instrument recordings, decreasing the number of landmarks

while keeping the number of witnesses equal to 500 fails to achieve an AUC ≈ 1. This has

to do with the time scale of the dynamical system being observed in relation to the time step at
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which it is measured. The period of the musical instrument recordings is about 100 samples so 500

data points well-approximates the projection of the limit cycle attractor in the delay reconstructed

space. However, 500 data points fails to capture the invariant measure of the chaotic dynamical

systems with time steps as described in Chapter 3.

Because we expect the mean PRF to better represent the data set when the number of

witnesses is sufficient to achieve the invariant measure along the attractor, we expect the AUC to

increase as we increase the number of witnesses. For both the musical instrument recordings and

projections of chaotic dynamics, keeping the number of landmarks fixed at 500 while increasing

the number of witnesses improves the classification. We observe this general trend for fixed

number of landmarks for the Lorenz classifier in the columns of Table 4.4(a) , perhaps less so

for the Rössler classifier. Stability in the classifier along this parameter axis can signal we have

enough data to achieve the invariant measure and properly represent the dynamics. While we need

this lower bound, we are most interested in identifying changes to model parameters that make

our TDA more successful at a cheaper cost, not more expensive. As the number of landmarks

contributes more to the cost of computing the persistent homology than the number of witnesses,

we prioritize using a lower number of landmarks to maintain an efficient regime-shift detection

algorithm, noting that the number of witnesses is also important as it controls how quickly and

how small of a regime-shift can be detected.

Surprisingly, using less number of landmarks results in robustly successful topological

classifiers for chaotic dynamical systems. All of the richness of the fractal structure and invariant

measure observable with more landmarks seems to make the persistent homology less discerning

than that reporting the coarse-grained global topology captured by less landmarks. The pocket of

lower AUC values approximately 0.50 in the Table 4.4 (b) with AUC ≈ 50 for 16 and 25 number of

landmarks and 1000 and 2000 number of witnesses, however, warns of using too few witnesses

and acts as a reminder that these binary classifiers are not symmetric. Model parameters that

create successful and robust membership tests for one data set may not be the same as those that

best determine membership to the other data set, just as model parameters that best capture the
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topology of the dynamics of one system are likely not the same for all dynamical systems but rather

depend on the time-scale and attractor geometry. This is acceptable for a regime-shift detection

algorithm where model parameters can be established for the current regime of the time series and

recalculated after a regime-shift occurs.

There is however shocking variability of this classifier across these size-based parameter values

for the witness complex construction on delay reconstructed chaotic time series data. For instance,

Table 4.4(b) shows that the Rössler classifier AUC drops to approximately 0.30 for 40, 000 witnesses

and 25 landmarks, while the AUC ≥ 80 for 10, 000 and 20, 000 witnesses using the same number of

landmarks. Similarly, the Lorenz classifier performs well for 40, 000 witnesses with an AUC ≥ 0.70

for most number of landmarks explored, except for 100 where the AUC drops to 0.20. Another

instance of instability in the Rössler classifier performance is for fixed number of witnesses equal

to 20, 000. For all number or landmarks explored except for 100 the AUC ≥ 80 yet for 100

landmarks it drops to less than 0.50. For 20, 000 witnesses, using 100 and 200 landmarks also

underperforms compared to other parameter values. One reason for this variability is the small

sample size used to compute our statistics. Note that for the parameter values for which the Lorenz

classifier fails, the Rössler classifier achieves an AUC ≈ 0.90. Likewise when the Rössler classifier

does poorly, the Lorenz classifier has an AUC ≈ 1. This indicates that another reason for classifier

instability is a high variance of the in-class data.

4.5.3 Detecting Regimes of Dynamic Brunel Neuronal Network

Recent work done by Hess et al demonstrates successful classification of Brunel neuronal

network dynamics from a combination of zero and one-dimensional persistent homological features

for filtrations of Vietoris-Rips complexes constructed from three measures of dissimilarity between

the spike trains of the individual neurons [28] . This inspired us to apply our topological membership

test to one-dimensional persistent homology of filtrations of witness complexes modeling the delay

reconstruction of the average voltage of excitatory neurons from each of distinct regimes.
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|�|,|L| 13 50 100 500
500 0.0 0.46 0.32 0.0
1000 0.0 1.0 0.88 0.82
2000 0.0 0.6 1.0 1.0
5000 0.0 0.0 0.0 1.0

10,000 0.0 0.0 0.0 0.6
20,000 0.0 0.4 0.4 0.8

Table 1: I2G3 Membership (vs I4G6)

1

|�|,|L| 13 50 100 500
500 0.00 0.62 0.84 0.00
1000 0.00 1.00 0.72 0.52
2000 0.00 1.00 0.92 1.00
5000 0.00 0.20 0.80 0.96

10,000 0.00 0.20 0.20 1.00
20,000 0.00 0.20 0.80 0.92

Table 1: I2G3 Membership (vs I1G4P5)

1

|�|,|L| 13 50 100 500
500 0.00 0.24 0.8 0.00
1000 0.00 1.0 1.0 0.2
2000 0.00 0.8 1.0 0.00
5000 0.00 0.4 0.6 0.00

10,000 0.00 0.4 0.2 0.8
20,000 0.00 1.0 1.0 1.0

Table 1: I2G3 Membership (vs I2G5)

1

Figure 4.5: The AUC of ROC for the I2G3 regime of the Brunel neuronal network dynamics over
the (number of witnesses, number of landmarks) parameter space.

|�|,|L| 13 50 100 500
500 0.20 0.70 0.96 1.0
1000 0.80 1.0 1.0 0.80
2000 0.6 1.0 1.0 1.0
5000 0.6 1.0 1.0 1.0

10,000 0.70 1.0 1.0 1.0
20,000 0.00 0.52 0.80 0.96

Table 1: I4G6 Membership (vs I2G3)

1

|�|,|L| 13 50 100 500
500 0.20 0.24 0.52 0.71
1000 0.80 1.00 0.96 0.44
2000 0.60 0.84 0.92 0.60
5000 0.72 1.00 0.90 0.96

10,000 0.88 0.60 0.80 0.72
20,000 0.00 0.64 0.58 0.92

Table 1: I4G6 Membership (vs I1G4p5)

1

|�|,|L| 13 50 100 500
500 0.32 0.34 0.20 0.50
1000 0.54 0.73 0.76 0.20
2000 0.44 0.84 0.72 1.00
5000 0.62 0.72 0.76 1.00

10,000 0.40 0.20 0.52 1.00
20,000 0.00 0.52 0.52 0.76

Table 1: I4G6 Membership (vs I2G5)

1

Figure 4.6: The AUC of ROC for the I4G6 regime of the Brunel neuronal network dynamics over
the (number of witnesses, number of landmarks) parameter space.

|�|,|L| 13 50 100 500
500 0.50 0.28 0.52 0.00
1000 0.40 1.00 0.88 0.52
2000 0.30 0.16 0.52 1.00
5000 0.20 0.72 0.80 0.96

10,000 0.60 0.72 0.80 1.00
20,000 0.40 0.72 0.66 0.92

Table 1: I1G4P5Membership (vs I2G3)

1

subtable!

|�|,|L| 13 50 100 500
500 0.80 0.26 0.50 0.84
1000 0.00 1.00 0.76 0.76
2000 0.80 0.70 0.6 0.4
5000 0.20 0.52 0.74 0.80

10,000 0.52 0.52 0.48 0.84
20,000 0.18 0.64 0.70 1.00

Table 1: I1G4P5Membership (vs I4G6)

1

|�|,|L| 13 50 100 500
500 0.60 0.52 0.66 0.48
1000 0.40 1.00 1.00 0.76
2000 0.36 0.56 0.44 0.64
5000 0.26 0.32 0.36 1.00

10,000 0.48 0.56 0.48 0.96
20,000 0.26 0.44 0.40 0.72

Table 1: I1G4p5 Membership (vs I2G5)

1

Figure 4.7: The AUC of ROC for the I1G4p5 regime of the Brunel neuronal network dynamics over
the (number of witnesses, number of landmarks) parameter space.

|�|,|L| 13 50 100 500
500 0.20 0.63 0.80 0.60
1000 0.5 1.0 0.80 0.96
2000 0.5 0.20 0.36 1.0
5000 0.5 1.0 1.0 1.0

10,000 0.80 1.0 1.0 1.0
20,000 0.20 0.68 1.0 0.92

Table 1: I2G5 Membership (vs I2G3)

1

|�|,|L| 13 50 100 500
500 0.48 0.66 0.80 0.44
1000 0.82 0.96 0.92 0.88
2000 0.74 0.60 0.72 0.92
5000 0.38 0.52 0.72 0.88

10,000 0.60 0.80 0.84 1.00
20,000 0.36 0.64 0.61 0.68

Table 1: I2G5 (vs I4G6)

1

|�|,|L| 13 50 100 500
500 0.22 0.22 0.32 0.48
1000 0.60 0.60 0.52 0.84
2000 0.60 0.60 0.12 1.00
5000 0.92 0.92 0.0.74 0.92

10,000 0.92 0.92 0.64 0.96
20,000 0.84 0.84 0.92 0.88

Table 1: I2G5 Membership (vs I1G4P5)

1

Figure 4.8: The AUC of ROC for the I2G5 regime of the Brunel neuronal network dynamics over
the (number of witnesses, number of landmarks) parameter space.
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The I2G3 classifier seems to consistently perform poorly with an AUC ≈ 0, illuminating

a flaw in the design of this classifier. If the persistent homology of samples from a data set is

consistently trivial with a PRF of weighted L2 norm equal to zero, the mean and variance can both

equal zero. It makes sense that this occurs for the I2G3 data set because the average excitatory

voltage as a function of time in this regime is a highly discontinuous signal that delay reconstructs

to be isolated points. The lack of one-dimensional homology can lead to sets of zero-valued PRFs

with a trivial mean and variance.

However, our topological classifier using the L2 metric on PRFs of witness complexes can

sometimes serve as an extremely successful and cheap method for distinguishing between two dif-

ferent regimes of the Brunel dynamics. Utilizing they two-dimensional delay reconstruction repre-

sentation of sliding windows from the average excitatory voltage time series to construct a witness

complex and computing statistics with the PRF in tandem provide a cheap methodology for clas-

sification of dynamical systems. The I2G5 classifier suggests the general trend that more witnesses

and more landmarks leads to better classification, while the I4G6 and I1G4p5 classifiers appear

more random in their moments of success and failure.

The overall variability in success across model parameters demonstrates the sensitivity of

these topological classifiers to the sliding window size and number of landmarks. To inves-

tigate how the topological signature itself is a function of the sliding window size and number

of landmarks, we next introduce in Chapter 5 a set of weight functions for the weighted L2 norm

that help reveal the types of topology present in a filtration. This intuition allows us to then select

parameter values according to a heuristic that aim to maximize the lifespan of global topology and

minimize the existence of local topology reported by the persistent homology. We hope that this

simplicity allows us to extract a consistent topological signature representative of the dynamical

system.



Chapter 5

Exploring Topology Across Model Parameters

5.1 Parameter Space Affecting Model Size

Computing the persistent homology of a filtration of witness complexes from time series data

requires selecting numerous parameters. We introduce heuristics for selecting two major parameters

affecting the size of the witness complex construction from time series data: the sliding window

size determines the amount of time series data used in a single representation of the dynamics

and the number of landmarks affects the resolution of the analysis. The goal is to construct

a computationally cheap filtration of witness complexes and extract a coarse-grained topological

signature from the associated PRF. A good topological signature should be consistent within a

data set and discerning between distinct data sets.

An historically guiding philosophy behind persistent homology is that short-lived features

are noise and long-lived features are meaningful. What is seen as short or long is sensitive to the

range of the scale parameter over which the persistent homology is computed. The scales at which

the data is analyzed must meet the demands of the analysis - i.e. high-resolution, real-time. Yet

this is often limited by computational capabilities.

Niyogi, Smale and Weinberger provide some of the earliest sampling requirements for provably

correct topological data analysis when the data lies on a manifold, demonstrating that for an ε
2 -dense

sample such that 0 < ε <
√

3
5τ from a manifold with condition number 1

τ measuring “curvatures

and nearness to self-intersections”, the Čech complex for ε has the same homology as the underlying

manifold [50] with high probability. When the underlying manifold is a circle, the condition number
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is the radius; for an ellipsoid, it is half the length of the smallest principal radius. Manifolds with

corners do not fit into this framework as they have condition number 0. So for manifold learning

purposes via persistent homology where the scale parameter ε is given by the Euclidean distance

between data points in Rd, we have an expected upper bound on the sample of size necessary to

achieve ε
2 density with high probability where a filtration of Čech complexes should accurately

reflect the homology of the underlying manifold.

5.1.1 Analyzing Time Series is Different

When time series data arrives sequentially as in a stream, a buffering or sliding window

analysis demands an alternative means of measuring what is enough data for successful TDA.

Time series are discrete sequential measurements from a dynamical system

{x(t)}Nt=1, x : Z→ R

and properties of the dynamical system can be reflected in the time series. Traditional time

series analysis techniques are based on frequency analysis and statistically aggregated information.

This is inadequate for nonlinear, non-stationary systems [20]. Here we hypothesize that TDA can

be fruitful. As a set of points, a finite data set is zero-dimensional. This is fine as TDA is highly

amenable to discrete data, e.g. manifold learning can happen from discrete point cloud samples.

Just as a point cloud can approximate a manifold, a the discrete sequential scalar measurements

of a time series approximate a curve segment embedded in R2,

{(t, x(t))}Nt=1 ⊂ R2.

Takens theory of delay reconstruction says one can produce a diffeomorphic representation of

the attractor of the underlying dynamical system in higher dimensional ambient space by using as

further coordinates successive delays of a generic measurement function. Assuming a time series is

a generic measurement function of the underlying dynamical system, the delay reconstructed point
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cloud

{(x(t), x(t− τ), x(t− 2τ), . . . , x(t− (d− 1)τ))}N−d·τt=1 ∈ Rd

provides an approximation of a much more interesting manifold from which to extract a

topological signature for the time series. For example, periodic data has a simple topological struc-

ture when delay reconstructed, resulting in a circle when the reconstruction meets the theoretical

requirements on the dimension and the delay described in Chapter 2. Quasiperiodic data delay

reconstructs to form invariant tori in the state space. However, these circles and tori can be highly

warped geometrically and knotted in Rd and projections into lower dimensions can create extra

homology.

Apart from the warping and projection due to the geometry of the dynamics, time series

analysis via TDA is challenging because how much data to consider for a single persistent homology

computation involves both the discrete time step at which and amount of time over which the system

is observed, as well as the intrinsic periodicities of the underlying dynamics. Acceleration caused

by the interactions between the equilibria of the dynamical system can then lead to non-uniform

density in the point cloud representation of the dynamics attractor once the time series has been

delay reconstructed. Chaotic data presents further challenges as non-uniform density can also arise

transverse to the flow reflecting a complicated invariant measure on the attractor. These variations

in density could possibly lead to shorter lifespans for significant topological features, and longer

lifespans for spurious topological features, in an analysis using persistent homology.

If an attractor is ergodic, then normalized time average of where a typical trajectory spends

its time along the attractor in state space is independent of initial conditions and gives the invariant

measure almost everywhere. This guaranteed distribution is achieved only in the infinite time limit,

and figuring out when a finite data set reflects these asymptotic properties can be difficult [46].

Yet time-sensitivity and real computational limitations demand efficient analysis with less data, i.e.

quickly detecting change points in stream data means one cannot wait to do an intensive analysis on
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a large window. Picking a minimal sufficient sliding window size is thus crucial to the remainder

of the analysis.

To reduce computations, we chose to compute the persistent homology of a filtration of

witness complexes [45]. The witness complex is defined by a relation that further determines the

resolutions at which one can extract meaningful topological information. Recall from Chapter

2, the witness complex uses a subsample of the data points called landmarks as the vertices in

the simplicial complexes. The number of landmarks affects the topology of the witness complex

built upon the landmark set; a greater number of landmarks means the scale of homological features

that can be detected is smaller. Ideally, the extracted topological signature is representative of the

underlying dynamics. Universally though, this can only be true for some range of number of

landmarks.

Beyond creating a model that performs well for membership testing between different dy-

namical systems as investigated in Chapter 4, it is an important question how to detect when the

model is capturing the homology correctly. Despite trends in the AUC of ROC curves indicating

that more witnesses and less landmarks produce better topology-based classifiers for chaotic dy-

namical systems, some seemingly random and shockingly low AUC values force us to question the

topological representation of our data across model parameter values. In this current Chapter 5, we

explore topological representations through the lens of continuous statistics like weighted L2 norms

of the functional representation of persistent homology, the PRF. In the following Chapter 6 we

suggest a set of discrete statistics on the persistence diagram for descriptive topological signatures

from the persistent homology.

Our contribution is an automatable construction of witness complexes from time series to

efficiently capture the global topology of the underlying data, a step towards an online topological

change-point detection algorithm. In Chapter 4, we introduced a local topological heuristic for

terminating a filtration of witness complexes. We now introduce a method to determine a sufficient

lower bound on the amount of data needed to obtain a correct and consistent global topological

signature reflective of the dynamics. In particular, we use ratios between weighted L2 norms on
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persistent homology rank functions introduced in Chapter 2 to select the sliding window size and

number of landmarks for witness complex construction from time series data. We demonstrate

the success of our heuristics for regime-shift detection of time series via superior binary classification

between individual musical instruments from voltage recordings and different chaotic systems from

projection onto a single coordinate, and discuss its pitfalls when characterizing distinct regimes of

the Brunel neuronal network leaky-integrate-and-fire model from average excitatory firing rates.

5.2 Topological Heuristics for Parameter Selection

5.2.1 Birth & Death Weighted L2 Norms

We use a set of weighted L2 norms on PRFs in heuristics that let us choose a sliding window

size and number of landmarks necessary to compute a consistent topological signature reflective

of a given dynamical system. Recall from Chapter 2 that a PRF is a functional representation of the

persistent homology of a filtration. The reduction of persistent homology to a single number like a

norm is convenient yet looses a lot of information. Integration such as that used to compute an L2

norm of a PRF is a common noise-filtering technique in time series analysis used to minimize the

effects of outliers; yet here it aggregates the local and global topological information. For instance, a

PRF f with a single homological feature that lives for the entire duration of the filtration and a PRF

g with n2 homological features, each of lifespan 1/nth of εmax, will both have ||f ||φ1 = ||g||φ1 = 1.

Weight functions that de-emphasize persistent homology classes that die early, are born late, or

have generally short lifespans can tease apart the global and local topology reported in a single

statistic like the weighted L2 norm.

To distinguish between these and other topologies, we propose to use the following weight

functions in weighted L2 metrics on the space of PRFs:

φB(x, y) = ae−bx (5.1)
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φD(x, y) = aeb(y−ε̂) (5.2)

These weight functions make distinctions between different types of short-lived features. For a, b >

0, the weight function φB decreases the contribution to the L2 norm from homological features born

later in the filtration and increases the contribution of homological features that are born early but

do not persist for the entirety of the filtration. In contrast, the weight function φD decreases

the contribution to the L2 norm from homological features that die earlier in the filtration while

increasing the contribution for late born features. See Figure 5.1 (b) for the number of early-born

short-lived homological features with lifespan (0, ε̂n), shown in Figure 5.1 (a) needed to produce an

otherwise empty PRF f with weighted L2 norm equal to 1 as a function of n; weight functions

φB = 2.12e−2x, φ1 = 1, φD = 2.12e2(y−
√

2) in yellow, blue and red, respectively. These values of

a, b, ε̂ are chosen according to the rescaling step introduced in Chapter 4. Unless a homological

feature is born exactly at the beginning of the filtration and lives until the very end, its contribution

to the L2 norm will be modified by both of these weight functions. These differences can inform us

about the topology captured by filtrations across the parameter space.

We could alternatively use as weight functions step functions φE , φU over the lower left and

upper right corner regions of the PRF, where E = [0,max(εD)]2|x≤y and U = [min(εB), εmax)]2|x≤y.

Like with the exponential functions φB, φD in Equations 5.1, 5.2, some parameters - here, a max(εD)

and a min(εB) - must be chosen. These determine the region of the PRF relating to an abstract

lifespan over which we integrate the portion of the lifespans of homological features that overlap

with this abstract lifespan. For instance, for max(εD) = εmax
n then E would be the triangular region

above the diagonal and below the dashed green line in Figure 5.1(a). Similarly for min(εB) = (n−1)·ε̂
n ,

U would be the triangular region above the diagonal and to the right of the pink dashed line in

Figure 5.1.

While the step functions provide a rough count of the number of homological features that

exist for at least a short amount of time around a specific range in the filtration, they have the
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Figure 5.1: (a) Weight functions can be utilized to change the contribution of different types of
short-lived features to the norm of a PRF. (b) Number of homological features of lifespan (0, ε̂n)
needed to produce a PRF representing no other homology with weighted L2 norm equal to 1 for
weights φ1, φB, and φD in blue, red, and yellow, respectively. By symmetry, we also get this
information for homological features with lifespan ( (n−1)·ε̂

n , ε̂).
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disadvantage of aggregating the local and global topology since the contributions from long-lived

features are not discernible from those of short-lived features. In particular, looking at the φE

weighted L2 norm of a PRF will not provide information about the entire filtration. In contrast,

the φD weighted L2 norm shrinks the contribution to the norm of features existing in the E region

so that the weighted L2 norm more accurately reflects the number of long-lived features.

Comparing the φE and φU norms of a PRF can reveal a difference in the number of features

earlier and later in the filtration, yet this information alone cannot separate a filtration containing

lots of early-born, short-lived local topology with few long-lived global topological features and a

filtration with all early-born features dying early followed by a few late-born homology. To do so

we would want to use another step function for the region T = [min(εD),max(εB)]2|x≤y. Under

this guiding philosophy, a step function on the T region aims to count the number of long-lived

homological features present in the filtration yet would not provide the information on the short

lived homological features captured by the filtration.

The rescaling introduced in Chapter 4 results in setting ε̂ =
√

2 · max(εD) for the weight

function φE , ε̂ =
√

2 · (εmax − min(εB)) for the weight function φU , and ε̂ =
√

2 · 1/2(εmax −

min(εD)) ·max(εB). Depending on how max(εB),min(εB),max(εD),min(εD) are selected, we can

force all of the homological features in the T region to contribute to both of the φE , φU weighted L2

norms. Then a PRF with φE ≈ φU ≈ φT would reflect a filtration capturing a consistent number

of topological features across the filtration. This trivially holds true when a filtration picks up no

homology, so this should be checked explicitly.

Allowing each of the φB, φD weight functions to exceed the unweighted L2 norm gives us more

information than normalizing the weights to be strictly less than the standard L2 norm; forcing

all weight functions to be equal when a PRF reports exactly n homological features of lifespan

[0, εmax] allows φB >> φ1 to indicate an abundance of homology in the L region and φB << φ1

to indicate an abundance of homology in the U region. So we really need only to compare either

φB or φD with φ1 or each other. To obtain the same information using the step function weights

would require using all three φE , φU , φT norms. In general, the entire PRF is more information to



78

store than a set of weighted L2 norms, which together provide a succinct and sufficient topological

signature of the filtration.

5.2.2 Bifurcation Landscapes

We consider the ratios

||βk||φB
||βk||φ1

,
||βk||φD
||βk||φ1

(5.3)

over the parameter space and call contour plots of such bifurcation landscapes. See Figure 5.7

for an example. These plots reveal regions of the parameter space separated by the level curves

equal to 1 where distinct types of topology are captured by the filtrations.

When
||βk||φB
||βk||φ1

< 1, we expect late born homology reflected in a plethora of features in the

upper right corner of a persistence diagram, or high values in the corresponding region of the PRF.

To better model the features in the data, then, we should consider local pairs in the parameter

space that increase this ratio. When
||βk||φB
||βk||φ1

> 1, we expect an abundance of features in the lower

left corner of a persistence diagram, or high values in that region of the PRF. This can be suggestive

of a either a filtration that is capturing many short-lived features early, thus representing the local

topology, with the global topology reflected in the longer-lived features, or a filtration that captures

the global topology early and no homology for the rest of the filtration. We expect similar patterns

in the topology represented by filtrations with opposite inequalities for ratios involving φD.

Conjecture: The region of the bifurcation landscape with value equal
to 1 corresponds to parameters to construct filtrations of witness com-
plexes revealing early-born, long-lived global topological structure with
minimal local topological structure.

5.2.3 Global Topological Heuristic

The bifurcation landscapes comparing φB, φD, φ1- weighted L2 norms are functions on 2D

subsets of the 3D parameter space
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for a fixed kmax established by Heuristic 1. As the ratios between these parameters vary, the

topology captured by filtrations of witness complexes built with those sets of parameters changes

dramatically. When |L| ≈ |Γ| and |L| >> kmax, local topology can overwhelm the global topology

in the persistent homology of the filtration. When kmax ≈ |L|, global topology can be short-lived. It

is important to be above a minimum |Γ| and |L| such that witness complexes are able to highlight

this global topology across the filtration. In particular, it takes a minimum amount of data to

well-approximate the delay reconstructed attractor of the dynamics and a minimum number of

landmarks |L| to construct n-dimensional homological features. Since the |L| contributes more to

computational demands than the |Γ|, we propose the following heuristic for choosing |L| and |Γ|:

Heuristic 5. Minimize a fitness function h(|L|, |Γ|) = |L| such that

(
||βk||φD
||βk||φ1

,
||β1||φB
||βk||φ1

)
≈ (1, 1),

*subject to constraints.

When no homology exists in the filtration, we trivially have

(
||βk||φD
||βk||φ1

,
||β1||φB
||βk||φ1

)
= (1, 1).

To address this, we start our algorithm by fixing |Γ| = |L|max where |L|max is determined by

computational limitations. We initialize |L| = kmax + 1 where kmax is chosen as per Heuristic 1

and increase |L|, tracking changes in the ordering between the φB, φD-weighted L2 norms. We

then increase |Γ|, and repeat the process of increasing |L| while tracking the ordering of the set of

φD, φB-weighted L2 norms.

The locations where the order of the φB, φD-weighted L2 norms switch in the parameter

space provides the level curves equal to 1 in the bifurcation landscape. In our experiments, we

observed a consistent |L| where a first switch occurs across all |Γ|. This demarcates a region of the

|L| × |Γ| parameter space below which φB > φD and global topology is born early and dies early

in the filtration. Above this, the pattern of switches between φB and φD as |L| is increased varies

depending on |Γ|.

For |Γ| ≈ |L|max, increasing |L| notably decreases the density of witnesses, causing both local

and global homology to be born later, so φD stays above φB. When |Γ| >> |L|max, increasing |L|

increases the amount of local topology that can be captured early because of the greater density of



80

witnesses. So φB again becomes larger than φD, now because of the presence of early-born, short-

lived homology. The first switch tells us we are observing the global topology for the majority of

the filtration and second switch tells us we are starting to capture local topology early. Since we

wish to minimize |L|, we should pick a pair (|Γ|, |L|) that occurs at the first switch as soon as we

encounter a second switch. This is the rationale of Heuristic 5, expressed in pseudo-code below.

Sometimes when |L| << |Γ|, φB ≥ φD and no switches occur, as the data is never sparse enough

for the complex to remain disconnected, yet a local minimum is encountered as Γ is increased.

This can also signal the topological transition from early dying global topology to early dying local

topology.

Such a location in the parameter space should suggest cheap parameters |L| and |Γ| for

which a filtration of witness complexes captures a number of long-lived global homological features

reflecting the underlying dynamics and little short-lived, local homology. The rescaling of the PRFs

introduced in Chapter 4 then allows us to infer that the weighted L2 norm of the PRF approximates

the number of large scale homological features in the point cloud data, providing a coarse-grained

topological signature for the dynamical system. We illustrate this through an example later in

Chapter 5.

5.2.3.1 Pseudo-code for Heuristic

To select (|Γ|, |L|):

for sliding window size ∈ [|L|max, |Γ|max]

for number of landmarks ∈ [kmax, |L|max]

for i ∈ [1, sample size]

Set sliding windows Wn = {w(n−1)·sliding window size, . . . , wn·sliding window size−1}

Select landmarks L = {`i0 , . . . , `0number of landmarks
}

Compute persistent homology, and store the associated PRF fn.

Compute the mean PRF of {fn}sn=1

Compute the φD, φB, φ1-weighted L2 norms of the mean PRF.
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if φB ≤ φD

...(continue in number of landmarks loop)

else φD ≤ φB

if counter j = 0

Store switch1(|Γ|) = |L|; increment a counter j = +1

... (continue in number of landmarks loop)

elseif counter j = 1

Store switch2(|Γ|) = |L|; increment a counter j = +1

... (continue in number of landmarks loop)

else counter j > 1

... (continue in number of landmarks loop)

if switch2(|Γ|) - switch1(|Γ|) < thresholdsomething

select (|Γ|, |L|) = (|Γ|, switch2(|Γ|))

exit algorithm

else

... (continue in sliding window size loop)

5.3 Experimental Results

5.3.1 Musical Instrument Recordings

Figure 5.2 shows the standard L2 norm of the mean PRF of one dimensional persistent

homology for filtrations of witness complexes associated to 10 sliding windows over the |Γ| × |L|

parameter space. We see a wide region in the lower left of the parameter space where 3 ≤ ‖β1‖φ1 ≤

6. As we look right and up towards (|Γ|, |L|) ≈ (5000, 500) we see ‖β1‖φ1 continues to increase

beyond 25. As we look left towards (500, |L|), as well as down towards (|Γ|, 10), ‖β1‖φ1 decreases

below 3.

The stability of ‖β1‖φ1 with parameters |Γ| and |L| inside this large triangular region suggests
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Figure 5.2: Unweighted L2 norm of the mean PRF of a set of 10 sliding windows of recordings of
middle C (f = 261.62 Hz) played on a viol recorded at 44.1 kHz sample rate using a Sony ICD-
PX312 digital voice recorder modeled by filtrations of witness complexes terminated using kmax = 9
over the (number of witnesses, number of landmarks) parameter space.

Figure 5.3: Stabilization is observed in the unweighted L2 norm of the mean PRF of a set of
filtrations of witness complexes with fixed number of landmarks equal to 100 and increasing the
number of witnesses from 100 to 5000. This depicts the function value along the red dashed
curve in Figure 5.2.

a sense of correctness to the persistent homology captured by these filtrations. The red dashed line

through |L| = 100 cuts through this wide, and thus stable, region of unweighted L2 norm between
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about 2.9 and 5.7. We observe the stabilization of ‖β1‖φ1 ≈ 4 across this line as we increase |Γ| from

100 to 5000 in Figure 5.3. We can relate this stable ‖β1‖φ1 ≈ 4 to the four global 1-dimensional

homological features in the 2D delay reconstruction of the middle C viol data we see in Figure 3.10

of Chapter 3.

A priori we do not know what the correct topological signature of this data should be.

Persistent homology reports homological features of varying birth times, death times and lifespans.

These properties of persistent homology classes distinguish between types of topological features.

The ratios
‖β1‖φB
‖β1‖φ1

and
‖β1‖φD
‖β1‖φ1

of Equation 5.3 can inform us as to what types of topological features

appear in a filtration of witness complexes for a given (|Γ|, |L|). To obtain a coarse-grained

topological signature for a musical instrument recording per Heuristic 5, we prioritize smaller |L|

where

(
‖β1‖φB
‖β1‖φ1

,
‖β1‖φD
‖β1‖φ1

)
is close to (1, 1). Recall that this should suggest a (|Γ|, |L|) so that the

global topology is alive for most of the filtration and the local topology largely disregarded. In this

situation, the unweighted L2 norm of β1, our rescaled mean PRF, should reflect the number major

homological features of the reconstructed dynamics.

Heuristic 5 essentially follows two loops - an inner loop increasing the number of landmarks

and an outer loop increasing the sliding window size. The sliding window size affects the

behavior of the weighted φB, φD, φ1 − L2 norms as |L| is increased. For fixed |Γ| = 500, 1000, and

5000, Figures 5.4 (a), (b), (c), respectively, show the weighted L2 norms as |L| is increased from

ktop + 1 = 10 to |L|max = 500; this is the behavior of the weighted L2 norms along the three green

dashed lines in Figure 5.2.

When |L| ≈ kmax, interesting global topology may be reported as early-born, short-lived

homological features. Low left endpoints of the curves in each Figure 5.4 (a),(b) and (c) reflect a

low norm of the persistent homology rank function. For each |Γ| = 500, 1000, and 5000 witnesses,

when |L| = kmax + 1 = 10, φB > φD, as is seen in Figures 5.4 (a), (b), and (c), respectively.

Each of the φB, φD, φ1-weighted L2 norms peak around |L| = 50 and decline as |L| is increased

when |Γ| = 500, as seen in Figure 5.4 (a). When |L| = 50, the weighted L2 norms are ordered

φD > φ1 > φB. By |L| = 200, all weighted L2 norms have dropped to below 1. The order φD > φB
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stays the same as |L| ≥ 50 for fixed |Γ| = 500. From this we can deduce that for |Γ| = 500 and

|L| ≥ 50 there is always homology born late in the filtration.

Once we increase to |Γ| = 1000, all φB, φD, φ1-weighted L2 norms exhibit greater stability

when |L| is increased beyond 50, as can be seen in Figure 5.4 (b). This tells us that a filtration

of witness complexes built with |L| ≥ 200 can have non-trivial persistent homology, yet more than

|Γ| = 500 witnesses are necessary to detect this.

We see a dramatic shift in the behavior of the weighted L2 norms as |L| is increased when

|Γ| = 5000 in Figure 5.4 (c). Now the φB-weighted norm is above the Standard L2 norm, which

is well above the φD-weighted norm. This suggests that there are a lot of early-born, short-lived

features in the filtration capturing the local topology when |Γ| = 5000. In a sense, these are the

late-born, late-death features exhibited for |Γ| = 500 and |L| ≥ 200 in Figure 5.4 (a) that are now

created and destroyed earlier due to a greater density of witnesses.
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Figure 5.4: Weighted L2 norms of the mean PRF of a set of filtrations of witness complexes
modeling two-dimensional delay reconstructions of viol recordings for fixed number of witnesses
as a function of increasing the number of landmarks from 10 to 500: (a) 500 witnesses (b) 1000
witnesses (c) 5000 witnesses and φ1 (red), φB (blue), φD (yellow).

Figure 5.4 (a) suggests that switch1(500) of Heuristic 5 pseudo-code occurs between |L| = 25

and |L| = 50 and no switch2(500) occurs. According to Heuristic 2 pseudo-code, |Γ| is increased

and |L| is reset to kmax + 1. Figure 5.4 (b) shows that when |Γ| = 1000, switch1 happens between

|L| = 25 and |L| = 50 and switch2 happens between |L| = 200 and |L| = 300. A large gap

between switch1(1000) and switch2(1000) and a switch3(1000) between |L| = 300 and |L| = 400
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encourage increasing |Γ| further. Figure 5.4 (c) shows a much more rapid transition in persistent

homology as switch1(5000) is between |L| = 25 and |L| = 50 and switch2(5000) happens between

|L| = 50 and |L| = 100.

Figure 5.5: The mean PRFs of a set of filtrations of witness complexes modeling two-dimensional
delay reconstructions of viol recordings terminated using kmax = 9 using a fixed number of
landmarks equal to 100 and number of witnesses equal to (a) 500 (b) 1000 (c) 5000. We circle
regions of the PRF emphasized (red) and de-emphasized (yellow) by the φD-weighted L2 norm.

Figure 5.6: We can relate the features in the mean PRF of filtrations of witness complexes modeling
two-dimensional delay reconstructions of viol recordings terminated using kmax = 9 for fixe number
of landmarks equal to 100 and fixed number of witnesses equal to (a) 500 (b) 1000 (c) 5000
back to the global and local topology of the witness complexes.

These analyses can be verified by the mean PRFs β1 for |Γ| increasing from 500, 1000, to 5000

and fixed |L| = 100 in Figure 5.5. We observe the anticipated trends in amount of persistent homol-

ogy for given birth and death times reported by the ordering of the φD-weighted and φB-weighted
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L2 norms. Looking directly at 2D projections of the geometric realizations of witness complexes

from each of these filtrations shown in Figure 5.6 confirms that the various short-lived homological

features revealed in the mean PRFs of Figure 5.5 are indeed representing global topology captured

late, local topology captured late and local topology captured early, respectively, for fixed |L| = 100

as we increase the |Γ| from 500 to 1000 to 5000.

The mean PRF in Figure 5.5 (a) reflects that filtrations of witness complexes with |Γ| = 500

and |L| = 100 is only beginning to capture 1-dimensional homology towards the end. Looking at a

projection of such a witness complex, we can observe in Figure 5.6 (a) that such complexes can in

fact remain disconnected late into the filtration, failing to correctly capture the global topology.

Four major homological features are reported by the mean PRF in Figure 5.5 (b). While

these features are alive at the end of the filtration but are not born during the earlier steps of

the filtration. This suggest that there is still not a high enough density of witnesses among the

landmarks to connect the simplicial complex near immediately. Additionally, short-lived homology

is born and dies at all resolutions of the filtration.

Increasing the |Γ| to 5000 mitigates both of these issues, connecting the complex sooner and

concentrating this short-lived homology to the lower left region of the PRF representing early-

born, early-death features, as is seen in Fig. 11(c). Figure 5.6 (c) demonstrates some of the local

1-dimensional homological features that are are born and die early in the filtration when |L| = 100

and |Γ| = 5000.

While visual analysis is greatly beneficial, producing graphics is an even more computationally

intensive task that requires human interaction. So having an automated algorithm like Heuristic 5

for selecting (|Γ|, |L|) that interprets the topological features present in a filtration and sets (|Γ|,

|L|) to capture maximal global topology and minimal local topology, subject to a cost function of

the parameters, is very helpful.

The bifurcation landscapes introduced in this Chapter organize this topological infor-

mation quite nicely, avoiding the in-depth analysis of the topology of witness complexes over the

(number of witnesses, number of landmarks) parameter space presented in this section. Con-
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Figure 5.7: The ratios of the (a) φB (b) φD weighted L2 norm over the standard φ1-weighted
L2 norm of the mean PRF of filtrations of witness complexes modeling two-dimensional delay re-
constructions of viol recordings terminated using kmax = 9 give the (a) birth weighted and (b)
death weighted bifurcation landscapes over the (number of witnesses, number of landmarks)
parameter space, revealing the types of topological features captured by filtrations of witness com-
plexes.
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sider the bifurcation landscape for the φB-weighted in Figure 5.7. The horizontal level curve equal

to 1 separates regions of the parameter space where global topology dies too early. Below the

curve, there are too few landmarks. Above the curve, a “C-shaped” level curve equal to 1 further

separates a right and left region of the parameter space where local topology is captured late (left

of the “C”, number of witnesses ≈ number of landmarks ) and local topology is captured

early (right of the “C”, number of witnesses number of landmarks). The top left corner of

this bifurcation landscape also shows a rapid transition in reported topology when the number

of landmarks increases from approximately 1
2 · number of witnesses to the number of wit-

nesses, as the witness complex approaches the Čech complex. According to Heuristic 5, we select

(number of witnesses, number of landmarks) ≈ (4000, 100).

5.3.2 Chaotic Dynamical Systems

To determine the pair of parameter values (number of witnesses, number of landmarks)

according to Heuristic 5, we first identify the level curve equal to 1 in the contour plot of the ratios

of weighted L2 norm over the standard L2 norm across the number of witnesses by number

of landmarks parameter space, rescaling the x-axis so that we are actually reporting the natural

logarithm of the number of witnesses. In the birth weighted bifurcation landscape for Lorenz

data shown in Figure 5.8 (a), this level curve is a single component that is roughly a line spanning

from (500 (≈ e6.2), 50) to (2000 (≈ e7.6), 400).

Following the pseudo-code, we begin by looking at the smallest number of witnesses and

number of landmarks. We then increase the number of landmarks and report any switches

in the order between the birth weighted L2 norm and the standard L2 norm. Here at number

of witnesses = 500 (≈ e6.2) , a single switch occurs at number of landmarks = 50. Next we

increase the number of witnesses and then repeat increasing the number of landmarks. As

we do this, we continue to only identify this single level curve equal to 1 and our switch1 continues

to increase. Once we increase to more than number of witnesses = 2000 (≈ e7.6), increasing the

number of landmarks no longer results in an intersection with the level curve equal to 1 and
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Figure 5.8: The birth weighted bifurcation landscape for mean PRF of filtrations of witness com-
plexes modeling two-dimensional delay reconstructions of Lorenz shows the ratio of φB to φ1 in-
creases as the witness complexes move further away from the Čech complex in the (number of
witnesses, number of landmarks) parameter space and experiences a local minima from ap-
proximately (5,000, 50) to (40,000, 100).

switch1 no longer occurs. However, for number of witnesses greater than 5000 (≈ e8.5), there is

still a local minimum occurring in the birth ratio between 16 and 200 landmarks. A modification of

Heuristic 5 to select local minimum of the birth ratio with an increase in number of landmarks

would select parameter values (20, 000 (≈ e9.9), 50), the smallest number of witnesses where this

local minimum occurs with an increase in number of landmarks and the number of landmarks

near the lower bound yet inside of this local minima region. These parameter values result in an

AUC ≈ 1 for the Lorenz classifier presented in Chapter 4. Figures 5.9 (a), (b) show witness

complexes near the beginning and end of the filtration terminated using kmax = 15 with 20, 000

number of witnesses and 50 number of landmarks to model a delay reconstructed sliding

window sample of Lorenz time series. We only see one of the two major holes surrounding the
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foci in the center of the butterfly wings in the attractor, albeit the two holes are of different sizes.

However there is minimal topology captured in the outer less dense region of the butterfly wing with

a single hole with short lifespan detected early in the filtration. This is reflected in the associated

PRF shown in Figure 5.9 (c).

Figure 5.9: A witness complex toward the beginning of the filtration terminated using kmax = 15
with number of witnesses equal to 20,000 and number of landmarks equal to 50 and the
corresponding PRF.

The bifurcation landscape for the Röossler data reveals two components to the level set equal

to 1. The first curve is roughly line spanning from (500 (≈ e6.2), 70) to (2000 (≈ e7.7), 400) in

the log-linear parameter space. The second component is a C-shaped curve towards the bottom

right of the bifurcation landscape spanning from 8000 (≈ e9) to 40, 000 (≈1 0.6) and 25 to 110

number of witnesses and number of landmarks, respectively. This leads to a straightforward

implementation of pseudo-code for Heuristic 5 using switch1 and switch2 which picks (20, 000 (≈

e9.8), 25). These parameter values result in an AUC ≈ 1 for the Röossler classifier presented in

Chapter 4. Figures 5.11(a) (b) show witness complexes near the beginning and end of the filtration

for a sample sliding window of the Rössler time series terminated using kmax and 20,000 number of

witnesses and 25 number of landmarks. The single major one-dimensional homological feature

of the Rössler attractor is captured by 25 landmarks and no short-lived persistent homology is
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Figure 5.10: The birth weighted bifurcation landscape for mean PRF of filtrations of witness
complexes modeling two-dimensional delay reconstructions of Rössler shows the ratio of φB to φ1

increases as the witness complexes move further away from the Čech complex in the (number of
witnesses, number of landmarks) parameter space and experiences a local minima

reported. However, the single feature does not live for the duration of the filtration and likely

reflects our prudence when choosing the number of landmarks.

5.3.3 Brunel Neuronal Network

In contrast to the Lorenz and Rössler systems, the Brunel neuronal network is high dimen-

sional when considering each neuron as a dimension of the system. Yet in the same way that

Lorenz sought to explain weather patterns, an infinite-dimensional system, with a low-dimensional

reduction, taking as a measurement function the average excitatory neuron firing rate seeks to

describe the dynamics of the Brunel system with compressed information. Extracting some of this
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Figure 5.11: A witness complex toward the beginning of the filtration terminated using kmax = 15
with number of witnesses equal to 20,000 and number of landmarks equal to 50 and the
corresponding PRF.

information from the persistent homology of delay reconstructed sliding windows of this time series

would be novel.

A straight forward implementation of Heuristic 2 for the I1G4p5 data set selects (500,100)

with AUC(I2G3, I4G6,I2G5) = (0.52, 0.50, 0.66). Heuristic 5 picks for I2G5: (500, 100) -

AUC(I2G3, I4G6, I1G4p5) = (0.80, 0.80, 0.32). Heuristic 5 picks for I4G6: (1000, 50) - AUC(I2G3,

I1G4p5, I2G5) = (1.0, 1.0, 0.73). Heuristic 5 picks for I2G3: (500, 75).

Yet again our analyses of the Brunel neuronal network data do not reveal the expected

patterns in the topological descriptors we are proposing. Here we expect the bifurcation landscapes

to illuminate a lower bound on the number of landmarks and number of witnesses via a

pair of level curves. The first of the level curves should emminate out radially from the location

representing the Čech complex and separates a region where local topology is born late in the

filtration, causing a ratio of the birth weighted L2 norm to be less than the standard unweighted

L2 norm. The second of the level curves should be constant in the number of landmarks and

parallel the curve number of landmarks = ktop + 1 where the topology changes from certainly

killing off the relevant topology at the end of the filtration to elongating the lifespans of the

meaningful topological features. This second level curve is dramatic in the bifurcation landscapes
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Figure 5.12: Birth weighted bifurcation landscapes for mean PRFs of filtrations of witness com-
plexes modeling four distinct regimes of the Brunel neuronal network dynamics show the ratio of
φB to φ1 increases as the witness complexes move further away from the Čech complex in the
(number of witnesses, number of landmarks) parameter space (a) I1G4p5 (b) I2G3 (c) I2G5
(d) I4G6.

for the periodic experimental musical instrument time series, is weaker yet still present in the form

of local minima for chaotic time series, but is absent for time series from all four of the Brunel

neuronal network dynamic regimes.

While the I2G3 regime is highly discontinuous and so we expect poor results, the remaining

three data sets look like good candidates for a sliding window analysis using delay reconstruction

as a technique to learn aspects of the dynamics. We set out to investigate what is going awry

with our heuristic for determining a sufficient lower bound on the amount of data we need to



94

topologically model the dynamics. Models incorporating non-stationarity and additive noise to

periodic signals visually align with the point clouds acquired by delay reconstructing Brunel time

series data from the I4G6, I1G4p5 and I2G5 regimes as shown in Figure 3.9. Since the experimental

music instrument recording data is likely to contain some noise, we attribute the poor results with

the Brunel data to non-stationarity. To see the affects of non-stationarity on the point clouds and

associated persistent homology, Figures 5.13(a), (b) depict the delay reconstruction of

X(t) = A(t) · cos(θ(t)) + η(t)

where A(t) and η(t) are linearly increasing and the associated PRF for a filtration of witness

complexes with number of witnesses = 500, number of landmarks = 250, and ktop = 9,

respectively.

Figure 5.13: Non-stationarity in a time series can create and obscure homology in reconstructed
point clouds when the number of witnesses is increased. Increases in the mean and variance
result in the staircase pattern in the associated PRF of filtrations of witness complexes modeling
two-dimensional reconstructions of such non-stationary systems.

We also look more closely at the delay reconstructions of the Brunel neuron model time se-

ries data. For small sliding windows from the I4G6 data, the topology of the delay reconstructed

trajectory is that of a line. The curvature of the line and the reach of the specific delay recon-

struction can lead to extra one-dimensional persistent homology, but for 500 witnesses the delay

reconstruction generally has trivial one-dimensional topology. For about 1000 witnesses, the tra-
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jectory appears to complete a rough elliptical orbit, suggesting the correct topology to detect is a

single one-dimensional homological feature.

Figure 5.14: Two dimensional delay reconstructions of the average excitatory neuron voltage in
the I4G6 regime of the Brunel neuronal network model reveal a similar point cloud pattern to
reconstructions of non-stationary time series when the number of witnesses is increased.

Yet as the sliding window size is increased, subsequent elliptical periods begin to overlap,

convoluting rather than reinforcing the topological signature. Not only are the ellipses moving, they

are growing and shrinking. This corresponds to non-stationarity of both the mean and variance.

Figure 5.15 shows the PRF of a sample of I4G6 data with 500 witnesses and 250 landmarks

exhibiting a similar staircase pattern to the PRFs corresponding to this dual non-stationarity

with the variation in the mean a result of additive Gaussian noise on a similar scale as the signal

rather than an increasing linear function. In either of these cases, the persistent homology will not

converge with an increase in sliding window size, making this data ill-suited for application of

our heuristic.

Rather than just a linear function of time, changes in the mean and variance could be more

complicated functions, like sinusoidal. This extra periodicity adds a dimension to the system that

could be resolved topologically by increasing the dimension of the delay reconstruction. Such

exploration could be future work. We turn now to improving the witness complex construction by

incorporating the additional information available from time series data.
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Figure 5.15: The PRFs of filtrations of witness complexes modeling two dimensional delay re-
constructions of the average excitatory neuron voltage in the I4G6 regime of the Brunel neuronal
network model and a non-stationary time series reveal similar features.



Chapter 6

Smart Witness Complexes

The interaction between the geometry and topology of attractors in the state space of dy-

namical systems can lead to complications in using persistent homology as a topological signature

of the dynamics. In the case that point clouds come from delay reconstruction of time series data,

the delay parameter dramatically also affects the geometry of the reconstruction. When modeling

delay reconstructed sliding window to extract a correct and consistent topological signature from

delay reconstructed sliding windows of time series data, the standard witness complex is still not

good enough.

Figure 6.1 shows the two dimensional delay reconstruction of the x-projection of a solution to

the Lorenz system of equations for a range of delay parameter values. For small values of the delay

parameter τ , such as τ = 6 in Figure 6.1(a), the coordinates of the delay reconstructed phase space

capture similar information and therefore the attractor remains close to the diagonal. When the

delay parameter value is τ = 24, shown in Figure 6.1(d), the reconstructed attractor begins to fold

back on itself due to the randomness of taking a delay parameter τ too large relative to the time

scale of the system. With delay values like τ = 12, 18, shown in Figure 6.1 (b), (c), the attractor

is well-expanded off of the diagonal and is not yet projected onto itself. Notable homological

features of the Lorenz attractor, like the two holes in the butterfly wings, appear spherical and

likely achieving maximal reach with the delay equa to the first minimum of time-delayed mutual

information. However, there are challenges with the point cloud acquired at this suggested delay

parameter. Because of the finite nature of our data, the invariant measure does not necessarily
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Figure 6.1: Standard witness complexes modeling two dimensional delay reconstructions of Lorenz
time series for a range of delay parameters reveal a number of flaws (a) τ = 6 (b) τ = 12 (c) τ = 18
(d) τ = 24.
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manifest in the sample density of the attractor. Moreover, the existence of an invariant measure

itself suggests that even delay reconstructing long time series will result in nonuniform density of

the sample along the attractor. This results in extra homology detected in low density regions,

such as the holes in the outer Lorenz butterfly wings seen in all panels of Figure 6.1. At the same

time that this supurfluous homology dies, the smaller of the two holes in the centers of the butterfly

wings closes up, obscuring the signal and noise of the persistence diagram. Indeed, none of the

standard witness complexes can capture the signature two holes associated to the foci in the center

of the Lorenz butterfly wings.

The time ordering of data coming from sequential measurements of a dynamical system allows

us to associate to each data point its speed and direction of travel in the delay reconstructed state

space. Incorporating this information into a metric that increases the distances between points

moving in opposite directions in the state space, we are able to produce a cheaper construction

for topologically modeling dynamical systems point cloud data. This novel witness complex con-

struction for time series analysis improves the topological signature we can detect using persistent

homology and is also is less sensitive to choice of delay parameter in delay coordinate reconstruction.

6.1 Temporally-Informed Witness Complexes

We aim to close spurious holes due to low density parallel to the flow that arise due to changes

in velocity and transverse to the flow due to an insufficient amount of data to achieve the invariant

measure. We likewise wish to close holes due to low density that reflect the invariant measure

itself. We simultaneously would like to keep small holes resulting from the presence of equilibria

open longer. We first attempt to address this by incorporating approximations of the unit tangent

vectors to the flow given by the normalized first difference vectors at points x, y into the modified

“distance” between these points:

x̂ =
ẋ

||ẋ|| , ŷ =
ẏ

||ẏ|| .
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In some cases, this modification is positive-definite, symmetric and satisfies the triangle-

inequality making it a metric.

One of those cases is when we consider adding some multiple of the distance between the

normalized first difference vectors to the Euclidean distance. Suppose the data set Γ = {wt}Nt=1

with wt ∈ Rd comes from a continuous dynamical system so that φs(wt) = wt+1 where s is the

sampling rate and φ is the flow. For wt ∈ Γ, let

ẇt = wt+1 − wt and ŵ =
ẇ

||ẇ|| .

Consider the temporally-informed family of metrics for parameter kdistortion+ given by

ddistortion+(w, `) =

√
dE(w, `)2 + kdistortion+ · dE(ŵ, ˆ̀)2.

This adds to the Euclidean distance between two points an amount roughly proportional to

the dissimilarity in their tangent vector approximations. In particular, and unlike a multiplicatively

proportional penalty such as

ddistortion× = dE(x, y) · (1 + kdistortion× · dE(x̂, ŷ)),

the uniform additive penalty allows ddistortion+ to retain the property of still being a metric.

Note that settings kdistortion+ = 0 results in the Euclidean distance, and we consider kdistortion+ ≥ 0.

The temporally-informed family of witness complexes is given by the witness relation

in Chapter 2 introduced in [45] using as the metric ddistortion+ . The standard witness relation using

the Euclidean metric dE is when we set kdistortion+ = 0. As kdistortion+ surpasses the diameter of the

data set, the geometric information provided by the reconstruction is obscured and we expect the

persistent homology to approach that of an (n − 1)-sphere, as the data points effectively become

samples from an (n−1)-sphere. For values of kdistortion+ in between, a range of topologies can arise.

We explore this phenomena here now.
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6.1.1 Modeling Chaotic Dynamics

For continuous time dynamical systems exhibiting chaos, the Lyapunov exponent bounds

the divergence of nearby orbits, limiting the change in direction of travel of nearby points. The

folding constant expressed by [cite: Boltt] bounds rotation and folding, similarly limiting change in

direction of travel of nearby points. Thus points that appear nearby in the Euclidean distance yet

far away in this modified distance are likely farther apart in the geodesic distance along the approx-

imation of the attractor. Increasing the distances between points traveling in dissimilar directions

also makes the distances between points moving in the same direction closer by comparison. This

in some sense can start to retract the data onto a homology representative dual to the cohomol-

ogy class of the attractor corresponding to the flow, collapsing holes due to fractal structure and

acceleration.

Using the metrics ddistortion+ to construct filtrations of temporally-informed witness com-

plexes changes the order that simplices appear from those using standard witness complexes. We

observe different patterns of simplices tiling these alternative models of the approximate attractor;

more simplices appear across regions of parallel travel and less simplices across regions of opposite

direction of travel. This has the affect of closing holes bounded by points moving in the same

direction caused by low density of data while maintaining open holes around regions of the state

space that are not part of the attractor.

Figure 2(a) shows the standard witness complex and Figure 2(b) shows the new witness

complex using 5% of the data points as landmarks for a 500 point sample of a trajectory from the

full 3D solution to the Lorenz 63 system solved with a time step of 0.01, at εmax
2 , halfway through

the filtration discretized into n = 10 steps and terminated for ktop = 10. Already the standard

witness complex includes 2-simplices covering the hole around the foci in the center of the left

butterfly wing. Terminating the filtration earlier would not ameliorate this situation, as there exist

simultaneously unwanted additional 1-cycles in the outer butterfly wing that do not reflect the

dynamics. We can see that the new witness complex includes 2-simplices across the outer butterfly
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Figure 6.2: Witness complexes shown halfway through filtrations terminated using kmax = 10 on 500
number of witnesses and 25 number of landmarks modeling a full three dimensional solution
to the Lorenz system (a) standard witness complex (b) temporally-informed witness complex with
kdistortion+ ≈ 20% of the diameter.

wing, a region of the attractor less densely sampled due to too little data for the invariant measure

to apply.

Figure 6.3: Witness complexes shown at the end of filtrations terminated using kmax = 10 on 500
number of witnesses and 25 number of landmarks modeling a full 3 dimensional solution
to the Lorenz system of equations (a) standard witness complex (b) temporally-informed witness
complex with kdistortion+ ≈ 20% of the diameter.

Figure 3(a) shows the standard witness complex and Figure 3(b) shows the new witness

complex for a 500 point sample of a trajectory from the full 3D solution to the Lorenz 63 system

solved with a time step of 0.01 at εmax, the end of the same filtration shown halfway through in

Figure 2. While the 1-cycle in the right butterfly wing of the standard witness complex reflecting the

foci appears close to death, we can visually inspect that the new witness complex well maintains the

two holes in the wings of the Lorenz butterfly that reflect the foci through the end of the filtration.
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Figure 6.4: Witness complexes shown at the end of filtrations terminated using kmax = 10 on 500
number of witnesses and 100 number of landmarks modeling a full 3D solution of Lorenz
system (a) standard witness complex (b) temporally-informed witness complex with kdistortion+ ≈
20% of the diameter.

Figure 4(a) shows the standard witness complex and Figure 4(b) shows the new witness

complex using 20% of data points as landmarks, for a 500 point sample of a trajectory from the

full 3D solution to the Lorenz 63 system solved with a time step of 0.01 at εmax. From this visual

analysis alone, we see that the number of landmarks used in the model matters. This is even more

true when considering computational costs, as well as correctness [45].

Many data sets are sequences of a single measurement function, and creating a point cloud

representing the underlying dynamics measured by the time series in higher dimensions requires

a implementing a methodology like Taken’s delay coordinate reconstruction. When theoretical

requirements are met, the point cloud should have the same homology as the attractor it approxi-

mates. Persistent homology, however, is sensitive to the geometry of the embedding of the attractor

in ways that Taken’s theorem and the variants since have not accounted for. For instance, data

points can serve to witness landmarks that are close in the ambient space yet far in geodesic dis-

tance along the attractor, creating and destroying meaningful homology in the filtration of witness

complexes. By increasing the distance between points traveling in different directions, the new

metric ddistortion+ can prevent the witnesses which are close in geodesic distance from witnessing

landmarks that are only close due to the embedding in the ambient space. Using this new metric

can expand regions of small reach in the delay reconstruction due to a choice of delay parameter that
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has not fully unfolded the attractor. However, it does not work to address issues of false crossings

in the delay coordinate reconstruction due to inappropriate choice of dimension parameter.

The witness complex built using this new metric ddistortion+ to model a point clouds with time

ordered data depends on the choice of parameter kdistortion+ . For the following experiments, we

normalize the data sets to have diameter approximately 1.0 and explore kdistortion+ = 0.01, 0.1, 0.5

and 1.0, corresponding to a maximum additive penalty for points moving in opposite directions

that is approximately 2%, 20%, 125% and 300% of the diameter.

6.2 Cheaper Construction

The temporally-informed witness complex is designed to connect landmarks traveling in

parallel directions, creating simplices transverse to the flow meanwhile excluding simplices between

geometrically close landmarks traveling in opposite directions. Because of this, a correct topological

signature can be detected from filtrations of witness complexes with less landmarks and witnesses

than the standard witness relation. This greatly reduces the computations required. We report in

Tables 6.1, 6.2 below the number of witnesses, number of landmarks and average number

of two-simplices for a set of 10 PRFs for filtrations of temporally-informed witness complexes and

standard witness complexes.

6.2.1 Number of 2-simplices

Tables 6.2, 6.1 show the average number of two-dimensional simplices in the final simplicial

complex in a filtration of witness complexes built using the new witness relation with kdistortion+

varying from 0% to 300% of the diameter of the data set for 10 sliding windows of from data set.

Each column corresponds to a different pair of number of witnesses and number of landmarks upon

which the model was built. Each row shows a different penalty kdistortion+ .

Table 6.1 reports this statistic for filtrations of witness complexes modeling two-dimensional

delay reconstructions of the x-coordinate projection of a solution to the Rössler system of equations.
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Figure 6.5: A panel of witness complexes shown (Row A) halfway through filtrations terminated
using kmax = 10 on 2000 number of witnesses and 100 number of landmarks modeling Rössler
(Row B) the end of filtrations terminated using kmax = 10 on 2000 number of witnesses and 100
landmarks modeling Rössler (Row C) the end of filtrations terminated using kmax = 10 on 2000
number of witnesses and 100 number of landmarks modeling Lorenz using (Column A) the
standard witness complex and (Column B) - (Column E) temporally-informed witness complexes
with kdistortion+ = 2%, 20%, 125%, 200%, respectively.
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kdistortion+ \(W,L) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 384 389 1114 2204

2% 396 403 1079 1595

20% 361 326 816 956

125% 364 385 754 1416

300% 386 365 707 1271

kdistortion+ \(W,L) (5000, 50) (5000, 100) (5000, 200)

0% 1449 2836 6119

2% 1451 2288 2490

20% 1118 1638 3114

125% 919 1840 3485

300% 847 1637 2741

Table 6.1: (2D Reconstructed Rössler) Number of 2-simplices at the end of the filtrations terminated
at ktop = 9 for witness complexes built using kdistortion+ varying from 0% − 300% of the diameter
of the point cloud.

We set kmax = 9. This means that all witness complexes built with 10 landmarks terminate in the

complete complex and have 120 triangles.

When the number of landmarks is increased to 20, the temporally-informed witness complexes

do not demonstrate a noticeable change the number of two-simplices in the model at the end of

the filtration. Yet by 50 landmarks, using the temporally-informed witness complexes for penalty

kdistortion+ ≥ 20% results in a reduction in the number of triangles for 2000 witnesses, and a 30%

to 50% reduction for 5000 witnesses . When the number of landmarks is 100, we observe an almost

50% decrease in number of triangles at the end of the filtration for both 2000 and 5000 witnesses for

penalty kdistortion+ ≥ 20%. A similar trend is observed for the two-dimensional delay reconstruction

of the projection onto the x-coordinate of a solution of the Lorenz 63 system of equation, as seen

in Table 6.2.

6.3 Enhancing Topological Discovery

While a reduction in cost is exciting, it is irrelevant if the resulting model is no good. We use

the following set of statistics to assert an improved sense of correctness of the persistent homology

captured for filtrations of witness complexes built using non-trivial kdistortion+ when modeling two-

dimensional delay reconstructions for Lorenz and Rössler.
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kdistortion+ \(W,L) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 323 323 793 1688

2% 298 309 752 1462

20% 263 236 595 1168

125% 302 302 594 837

300% 302 297 504 801

Table 6.2: (2D Reconstructed Lorenz) Number of 2-simplices at the end of the filtrations terminated
with ktop = 9 for witness complexes built using kdistortion+ varying from 0%−300% of the diameter
of the point cloud..

6.3.1 Unweighted L2 Norms

Throughout this research we propose to use the weighted L2 norm of the PRF representation

of persistent homology as a topological signature for classification. We now look at how descriptive

the unweighted version of this topological signature is with respect to feature identification of the

underlying dynamical system.

Table 6.3 shows the mean of the unweighted L2 norms of PRFs corresponding to a set of

10 two-dimensional delay reconstructions of time series obtained from projections of the Rössler

chaotic dynamical systems, respectively, onto their x-axes. The signal reported by this norm for

witness complex parameters number of landmarks equal to 10 and number of witnesses equal

to 100 is encouraging. For all new parameters kdistortion+ tested, including the control resulting in

the standard witness complexes, the unweighted L2 norm is approximately 1. Knowing a priori

that the dynamics of the Rössler system are well-represented by a topological signature of 1, we

are pleased. This holds for when increasing the number of witnesses to 1000. However, this

signature changes when increasing the number of landmarks to 20. For both 1000 and 2000

number of witnesses and 20 number of landmarks, the unweighted L2 norm jumps to over

approximately 1.6 for the control standard witness complex. Using the temporally-informed

witness complex construction decreases this unweighted L2 norm to about 1.4 for a penalty

kdistortion+ ≈ 20% of the diameter of the data set and to about 1 for kdistortion+ ≈ 125%, 300%,

which is more reflective of the Rössler system. When the number of landmarks is increased to

50 and then 100 landmarks, the unweighted L2 norm increases to about 10 and then 20 for the
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 0.98 0.89 2.51 1.60 8.72 17.80

2% 1.0 0.86 2.56 1.55 8.88 18.56

20% 1.04 0.98 1.86 1.36 8.50 21.32

125% 1.02 1.02 1.16 1.06 5.87 17.05

300% 1.02 1.05 1.05 1.06 3.98 14.10

kdistortion+\ (W,L) (5000, 50) (5000, 100) (5000, 200)

0% 4.91 16.83 38.10

2% 4.76 18.25 44.95

20% 5.10 20.32 43.79

125% 3.41 16.04 36.27

300% 1.91 13.32 39.15

Table 6.3: (2D Reconstructed Rössler) Unweighted L2 norm of PRFs for filtrations terminated at
ktop = 9 for witness complexes built using kdistortion+ varying from 0% − 300% of the diameter of
the point cloud.

standard witness complex construction. These numbers are reduced by approximately 50% and

25%, respectively, when kdistortion+ ≈ 300%.

These trends are closely followed for the Lorenz data, as seen in Table 6.4. For 10 number of

landmarks and 100 number of witnesses, the unweighted L2 norm is approximately 0.65. This

remains the same for the standard witness complex when increasing the number of witnesses

to 1000, though increases by about 50% for kdistortion+ ≈ 125%, 300%. None of these values reflect

the Lorenz dynamics nor differentiate it from the Rössler system as seen through the lens of this

statistic. Once the number of landmarks is increased to 20, the unweighted L2 norm increases

to about 2. This is a topological signature that we can relate to the Lorenz system of equations.

Although there are three equilibria, the two foci in the center of the butterfly wings exhibit a

certain symmetry that should lead to their simultaneous detection. They may also exhibit geometric

properties like a larger radius that contribute to their detection over the hyperbolic equilibrium

at the origin. However, the Rössler data also had an unweighted L2 norm approximately 2 for

these model parameters for the standard witness complex. Only when kdistortion+ ≈ 125%, 300%

does the unweighted L2 norm provide topological signatures approximately 1 and 2 for the Rössler

and Lorenz systems, respectively. Increasing the number of witnesses to 2000 increases the

unweighted L2 norm when kdistortion+ ≈ 20%, 125% to over 2.7, much closer to three, the genus of
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 0.78 0.69 1.92 1.77 5.60 11.52

2% 0.76 0.81 2.07 1.85 5.83 11.30

20% 0.77 1.82 2.55 2.91 4.88 10.13

125% 0.88 1.49 2.30 3.07 4.14 8.60

300% 0.70 1.00 1.80 2.17 4.84 7.56

Table 6.4: (2D Reconstructed Lorenz) Unweighted L2 norm of PRFs for filtrations terminated at
ktop = 9 for witness complexes built using kdistortion+ varying from 0% − 300% of the diameter of
the point cloud.

the canonical tori we sought to detect as our topological signature of the Lorenz attractor. For

50 and 100 number of landmarks, the unweighted L2 norm increases to about 6 and about 12,

respectively, for the standard witness complex. When kdistortion+ ≈ 125%, 300%, the unweighted

L2 is kept lower to about 4 and 8 for 50 and 100 number of landmarks, respectively.

6.3.2 Average Lifespan of Longest Living Homological Feature

The average lifespan of the longest living one-dimensional homological feature can serve as a

measure of the strength of the signal in the persistent homology compared to the noise. We report

this lifespan as the percentage of the filtration for which this predominant feature is alive. Using

the temporally-informed witness complex in filtrations can increase the average lifespan by

up to 30%.

In Table 6.5 for Rössler data, we see that for 100 number of witnesses and 10 number

of landmarks, setting kdistortion+ ≈ 300% increases the average lifespan of the longest-living one-

dimensional homological feature in the filtration of temporally-informed witness complexes

to 97% of the filtration from only 80% for the standard witness complex. When the number of

witnesses is increased to 1000 this is an even more dramatic increase from 64% to 100%. The

average lifespans of the longest living feature for the standard witness complex and for kdistortion+ ≈

300% for 20 landmarks and both 1000 and 2000 witnesses are also approximately 60% and 100%,

respectively. Setting kdistortion+ ≈ 20%, 125% also results in a similar improvement. Once the

number of landmarks is increased to 50 or 100, all witness complexes capture the longest-living
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 80% 64% 65% 67% 100% 100%

2% 83% 56% 74% 72% 100% 100%

20% 91% 85% 99% 100% 100% 96%

125% 94% 93% 100% 100% 100% 97%

300% 97% 100% 100% 100% 100% 96%

kdistortion+\ (W,L) (5000, 50) (5000, 100) (5000, 200)

0% 100% 100% 100%

2% 100% 100% 100%

20% 100% 100% 100%

125% 100 % 100% 100%

300% 100% 100% 98%

Table 6.5: (2D Reconstructed Rössler) Percentage of the filtration for which the longest living one-
dimensional homological feature lives for filtrations terminated at ktop = 9 for witness complexes
built using kdistortion+ varying from 0%− 300% of the diameter of the point cloud.

homological feature for approximately the entirety of the filtration.

Table 6.6 shows that the average lifespan of the longest living feature for Lorenz data is not

increased by using the temporally-informed witness complex when there are only 100 witness

and 10 landmarks. For 1000 witness and 10 landmarks, we observe over a 50% increase in the

average lifespan using kdistortion+ ≈ 20%, 125%, 300%. For these same kdistortion+ , we observe about

a 20% increase in the average lifespan when the data is modeled with 1000 and 2000 witnesses

and 20 landmarks. Again when the number of landmarks is 50 or 100, all witness complex

constructions maintain the longest living homological feature for nearly the whole filtration.

6.3.3 Signal From 2-Cluster Count

We perform hierarchical 2-clustering on the points in the persistence diagram and compute the

number of points in the cluster containing the longest-living one-dimensional homological feature.

This clustering takes places on the points in the persistence diagram under the Euclidean metric.

Specifically, we implement a single-linkage criteria that creates two clusters separated by the longest

edge in the MST. To distinguish signal from noise, we expect the maximal lifespan feature to be

a member of a smaller cluster representing the signal and consider the remainder of the data as

noise in the other cluster. Instead of reporting statistics like the mean which is sensitive to outliers,
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 72% 41% 81% 74% 95% 95%

2% 70% 50% 84% 84% 98% 100%

20% 70% 64% 94% 98% 100% 96%

125% 82% 75% 99% 100% 99% 91%

300% 66% 74% 99% 100% 98% 84%

Table 6.6: (2D Reconstructed Lorenz) Percentage of the filtration for which the longest living one-
dimensional homological feature lives for filtrations terminated at ktop = 9 for witness complexes
built using kdistortion+ varying from 0%− 300% of the diameter of the point cloud.

we report the mode number of points in the cluster containing the maximal lifespan feature as

topological signature on which to base correctness of the representation. Instead of variance, we

report the frequency that the mode occurs as the number of points in the cluster containing the

maximal lifespan feature as measures of consistency. As a finer measure of the consistency of the

signal, we report the entropy of the frequency of the number of points in the cluster containing

the maximal lifespan feature. This set of discrete statistics on the persistence diagram provide

an example of the features TDA can produce for machine learning techniques, like convolutional

neural nets, from time series data.

When the signal and noise are well-separated in the persistence diagram, the maximal lifespan

feature should be in a cluster with other highly persistent one-dimensional features in the filtration.

The number of points in the cluster with the maximal lifespan feature thus serves as a representation

of the global topology of the attractor.

6.3.3.1 Persistence Diagrams 2-Clustering: Average Distance Between Clusters

Separating signal and noise is often a first step in preprocessing data. Considering the

two clusters resulting from the hierarchical clustering of the points in the persistence diagram to

represent the signal and noise captured by the persistent homology of the filtration, we can compute

the distance between the two clusters as a measure of how well-separated the signal is from the

noise. Note that this distance is the edge length of the longest edge in the minimal spanning tree,

which is orthogonal to the maximally separating hyperplane found using a support vector machine.
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Here we scale PRFs to have corner coordinate (0,10) with immortal cycles born at εB represented

by points at (εB, 11).

kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 1.27 0.90 4.30 5.40 7.13 5.11

2% 1.37 1.0 5.40 6.00 7.30 4.43

20% 0.72 1.2 8.41 8.10 6.80 3.81

125% 0.32 1.10 5.01 0.90 6.90 4.63

300% 0.0 0.0 0.72 0.09 6.91 4.53

kdistortion+\ (W,L) (5000, 50) (5000, 100) (5000, 200)

0% 7.91 6.61 4.64

2% 8.00 6.50 3.52

20% 8.10 5.43 3.32

125% 7.63 6.25 3.53

300% 7.01 6.00 2.88

Table 6.7: (2D Reconstructed Rössler) Distance between 2-clusters with re-scaled PRFs with ε̂ = 10
for filtrations terminated at ktop = 9 for witness complexes built using kdistortion+ varying from
0%− 300% of the diameter of the point cloud.

kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 0.50 1.20 4.10 4.32 4.55 3.06

2% 0.50 1.70 4.00 4.56 4.46 4.33

20% 0.32 2.80 6.82 4.38 6.73 4.27

125% 0.76 5.02 3.79 3.63 6.52 3.92

300% 0.00 4.50 5.57 5.50 5.48 3.83

Table 6.8: (2D Reconstructed Lorenz) Distance between 2-clusters with re-scaled PRFs with ε̂ = 10
for filtrations terminated at ktop = 9 for witness complexes built using kdistortion+ varying from
0%− 300% of the diameter of the point cloud.

For the Rössler data shown in Table 6.7, when the number of landmarks equals 10, there

is little to no improvement in separating the signal from the noise from using the temporally-

informed witness complex instead of the standard witness complex. For such few landmarks, there

is often only a single homological feature detected in which case the distance from the non-trivial

cluster to the trivial cluster is counted as zero. When the number of landmarks equal to 20, the

temporally-informed witness complex using kdistortion+ = 20% nearly doubles the distance between

the two clusters, a 100% increase in separation between signal and noise. When the number of

landmarks is greater than 20 there is again little improvement.
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The Lorenz data shown in Table 6.8 reveals similar trends with even better results for number

of landmarks greater than 20. We observe approximately 20% increases in separation between

signal and noise using 50 and 100 landmarks using the temporally-informed witness complexes with

kdistortion+ = 20%.

6.3.3.2 Persistence Diagrams 2-Cluster Count: Mode

We expect the number of points the cluster with the maximal lifespan feature that occurs the

most, i.e. the mode, to be the most accurate topological representation of the dynamical system.

We report this mode for the Rössler, Lorenz and periodically driven pendulum in the tables below.

kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 1 1 1 1 1 1

2% 1 1 1 1 1 1

20% 1 1 1 1 1 1

125% 1 1 1 1 1 1

300% 1 1 1 1 1 1

kdistortion+\ (W,L) (5000, 50) (5000, 100) (5000, 200)

0% 1 1 1

2% 1 1 1

20% 1 1 1

125% 1 1 1

300% 1 1 1

Table 6.9: (2D Reconstructed Rössler) Mode number of homological features in the 2-cluster con-
taining the longest living homological feature for filtrations terminated at ktop = 9 for witness
complexes built using kdistortion+ varying from 0%− 300% of the diameter of the point cloud.

As seen in Table 6.9, the discrete number of points in the hierarchical 2-cluster containing

the longest living homological well captures a topological signature of one that we associate to the

Rössler system across all number of landmarks, number of witnesses, and kdistortion+ values.

Indeed, this signature arises more than any other value. However, Table 6.10 reveals that for

number of landmarks ≤ 20 and number of witnesses ≤ 2000 the standard witness complex

also captures a topological signature of one. When the number of landmarks is increased to

50, this topological signature equals two, differentiating the Lorenz system from the Rössler. This

topological signature reflects the two main holes in the wings of the Lorenz butterfly. When the
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 1 1 1 1 2 3

2% 1 1 1 1 3 3

20% 1 3 3 3 3 3

125% 1 1 1 6 4 3

300% 1 1 1 1 6 27

Table 6.10: (2D Reconstructed Lorenz) Mode number of homological features in the 2-cluster
containing the longest living homological feature for filtrations terminated at ktop = 9 for witness
complexes built using kdistortion+ varying from 0%− 300% of the diameter of the point cloud.

number of landmarks is further increased to 100, the mode count of homological features in the

2-cluster with the longest living homological feature equals three. This still differentiates the Lorenz

system from the Rössler, possibly highlighting the three of the singularities of the Lorenz system

of equations. Without visual confirmation, we cannot know whether this third feature actually

corresponds to the geometrically small gap in the data near the origin at which the lone hyperbolic

saddle node resides or is detecting a particularly low-density region in the outside of the butterfly

wings.

The temporally-informed witness complex is intended to close the latter type of holes

while encouraging the detection of the former. Using kdistortion+ ≈ 2%, we see the nearly same

topological signatures arise as we increase the number of witnesses and number of landmarks

as we did for the standard witness complex. The exception occurs for (number of witnesses,

number of landmarks) = (2000, 50). Rather than a topological signature of two, we immediately

detect a signature of three. The same topological signature holds when we increase the number

of landmarks to 100. This is suggestive that for both (2000, 50) and (2000, 100), this topological

signature of three actually reflects the three singularities of the Lorenz system and is a consistent

signature given a large enough number of witnesses and number of landmarks.

When kdistortion+ ≈ 20%, this topological signature of three appears for much smaller num-

ber of witnesses and number of landmarks and remains consistent as these parameters are

increased. Not only are we able to capture the same interpretable topological signature with half

as many witnesses and 10% of the number of landmarks necessary to achieve the same results with
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the standard witness complex, the consistency of the topological signature across model parameters

like number of witnesses and number of landmarks suggests a sense of model robustness for

the temporally-informed witness complex using kdistortion+ ≈ 20%.

For kdistortion+ ≈ 125%, 300% and number of witnesses ≤ 1000, we get a topological

signature of one and are again unable to distinguish between Lorenz and Rössler. Increasing the

number of landmarks and number of witnesses allows for differentiation between the chaotic

dynamical systems, yet some of the topological signatures reported - 6, 4, 27 - are less relatable to

the coarse-grained topology of the Lorenz attractor. This suggests that these values are outside of

the range of kdistortion+ appropriate for constructing temporally-informed witness complexes

that reflect the coarse-grained topology of the attractor.
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6.3.3.3 Persistence Diagrams 2-Cluster Count: Frequency

Just because something occurs more than any other thing does not mean that it happens

very often. To describe the unpredictability of the topological signature given by the mode number

of persistence intervals in the 2-cluster containing the maximal lifespan feature, we report the

frequency with which this mode cluster size occurs. We see that the temporally-informed witness

relation generally improves the frequency with which this mode occurs. If the mode is indeed a

good candidate for representing the topology of the dynamics, this is excellent.

kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 70% 50% 100% 80% 100% 100%

2% 70% 50% 100% 90% 100% 100%

20% 80% 70% 90% 70% 100% 70%

125% 90% 100% 80% 90% 100% 60%

300% 100% 100% 90% 90% 90% 50%

kdistortion+\ (W,L) (5000, 50) (5000, 100) (5000, 200)

0% 100% 100% 90%

2% 100% 100% 70%

20% 100% 100% 60%

125% 100% 80% 70%

300% 100% 70% 60%

Table 6.11: (2D Reconstructed Rössler) Frequency of occurrence of the mode number of homological
features in the 2-cluster containing the longest living homological feature for filtrations terminated
at ktop = 9 for witness complexes built using kdistortion+ varying from 0% − 300% of the diameter
of the point cloud.

Table 6.11 shows that when the number of landmarks equals 10 the temporally-informed

witness relation increases the frequency with which a topological signature of one is reported from

as little as 50% when using the standard witness relation to as much as 100% for higher kdistortion+ .

Consistency in a signature is important when hoping to use it towards classification, segmenta-

tion or prediction. Since this is in particular an explainable signature with respect to the delay

reconstructed Rössler point cloud, we consider this a notable improvement.

Table 6.12 in contrast shows that for delay reconstructed Lorenz point clouds, when the num-

ber of landmarks equals 10 and the number of witnesses equals 100, the mode occurs 100%

of the time when using the standard witness complex, decreasing to 90% when kdistortion+ = 20%.
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kdistortion+\ (W,L) (100, 10) (1000, 10) (1000,20) (2000, 20) (2000, 50) (2000, 100)

0% 100% 80% 50% 60% 70% 40%

2% 100% 80% 60% 50% 60% 70%

20% 90% 70% 80% 90% 90% 80%

125% 100% 50% 40% 30% 30% 30%

300% 100% 70% 80% 90% 30% 20%

Table 6.12: (2D Reconstructed Lorenz) Frequency of occurrence of the mode number of homological
features in the 2-cluster containing the longest living homological feature for filtrations terminated
at ktop = 9 for witness complexes built using kdistortion+ varying from 0% − 300% of the diameter
of the point cloud.

This is actually positive news for the temporally-informed witness relation using kdistortion+ = 20%,

since all witness complex constructions for these (number of witnesses, number of land-

marks) parameter values reported a topological signature of one, which does not distinguish Lorenz

from Rössler. Increasing the number of witnesses to 1000 decreases frequency of mode occur-

rence for all witness complex constructions. For all witness complex constructions excluding when

kdistortion+ = 20%, this is an improvement since the topological signature is still erroneously one

and we are reporting it less frequently. In the case when kdistortion+ = 20% we are capturing an

explainable topological signature of three with a frequency of 70%, an even greater accomplishment.

For all other (number of witnesses, number of landmarks) parameter values, the temporally-

informed witness relation using kdistortion+ = 20% produces filtrations that are able to capture this

topological signature of three with frequency between 80% and 90%.

It is only when number of witnesses equals 2000 and number of landmarks equals 50 or

100 that the standard witness complex captures a topological signature for the Lorenz system that

can distinguish it from the Rössler. However the topological signatures representing the Lorenz

system, which are distinct for 50 and 100 number of landmarks, arise 70% of the time when

using 50 landmarks and only 40% of the time when using 100 landmarks.

While all constructions but the temporally-informed witness relation using kdistortion+ = 300%

result in a correct mode topological signature of three when using 2000 witnesses and 100 landmarks,

the temporally-informed witness relations using kdistortion+ = 2%, 20% report this signature

with much greater frequencies of 70%, 80% compared to the temporally-informed witness relation
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using kdistortion+ = 125% with frequency 35%. This indicates that there is an appropriate range

of kdistortion+ values that improves not only the correctness, but the consistency of the

topological signature, as well.



Chapter 7

Conclusion

This thesis research is motivated by the task of developing an online regime-shift detection

algorithm for time series analysis that incorporates topology. We conclude that witness complexes

can be used in successful TDA for time series analysis with care of parameter selection or

upon further modification. We test our techniques on time series derived from synthetic low

dimensional chaotic dynamical systems, distinct dynamic regimes of the synthetic sparse Brunel

neuronal network, as well as experimental live musical instrument recordings.

In this dissertation, we presented a topological membership test for machine learning on

delay coordinate reconstructed sliding windows of time series data and investigate its strengths

and limitations. We use a sparse simplicial complex model - the witness complex - to produce

our topological signature. The variability in topological representation of the same data based on

choice of model construction parameters lead us to introduce heuristics for parameter selection that

aim to capture the global topology with minimal local topology, or noise added to the signal. We

then introduce a metric that incorporates the temporal ordering of the data points to increase the

distances between data points with different dynamics. In application to synthetic chaotic data,

we show that using this new metric in the construction of topological models can reduce the size of

computations by up to 50% and increase the strength and consistency of signal by up to 40% and

50%, respectively.

We train our membership test by computing the mean persistent homology rank function

(PRF) associated to a subset of a class of data as a topological representation of that class, as
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well as computing a measurement of the variance. We test class membership by computing the

L2 distance between a sample PRF and the mean PRF of that class and comparing this distance

to a threshold parameterized by the variance. This results in successful classification between

distinct classes within a data type for some range of the parameters involved in the construction

of the filtration of witness complexes. Motivated by developing cheap algorithms for rapid clas-

sification of incoming time series data, our results are particularly encouraging in comparison to

recently proposed higher dimensional topological analyses that also achieve successful classification

of distinct Brunel neuronal network dynamic regimes. More generally, introducing topological mea-

surements into a statistical analysis addresses challenges presented by nonlinearity and improves

the interpretability of the results.

Balancing computational efficiency and correctness is a universal challenge. By weighting

the norm of our topological signature to emphasize early-born and early-dying or late-born and

late-dying persistent homology, we can infer and monitor the types of topology reported across

filtrations of witness complexes for a range of construction parameters controlling the size, cost and

speed of computations from a single measurement function. From this we can implement heuristics

to select model parameters that capture large-scale global topological features and deemphasize

local small-scale topology. Investigating the limitations of a method is a crucial part of research.

Our model construction parameter selection heuristic does not work for non-stationary data like

the time series from the Brunel neuronal network dynamics because the topological signature does

not stabilize with an increase in amount of data as it does for near-periodic or chaotic systems.

Observing non-uniform density of the data points approximating attractors of low dimensional

continuous chaotic dynamical systems due to acceleration and fractal structure redirected our ob-

jective from selecting appropriate witness complex model construction parameters to redefining the

metric underlying the witness complex construction itself. To encourage the persistent homology

to reflect the singularities in the equations of evolution while discouraging persistent homology

due to the invariant measure of the attractor, we increase the distance between points moving in

dissimilar directions in the reconstructed state space. We report the number of two-simplices at
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the end of a filtration of witness complexes as well as interpretable features of the one-dimensional

persistent homology to demonstrate the improvements to cost and topological signature from using

the temporally-informed metric.

Future questions include investigating how the delay parameter in the process of Takens delay

coordinate reconstruction relates to the persistent homology of delay reconstructed sliding windows

of chaotic time series data. Work has been done for periodic systems in [27]. Another challenge of

real world data is noise. To associate a direction of travel to each data point approximating the

attractor of the dynamics, we take a first difference of the location coordinates. Incorporating this

information into the metric amplifies the affects of noise in the data. One approach to mitigate

noise would be to do clever averaging that is aware of the boundary. Alternatively, utilizing

the directionality of time in topological models that avoid taking first differences can improve

performance in the face of noise.
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