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Abstract

Topology based analysis of time-series data from dynamical systems is powerful: it poten-
tially allows for computer-based proofs of the existence of various classes of regular and chaotic
invariant sets for high-dimensional dynamics. Standard methods are based on a cubical dis-
cretization of the dynamics and use the time series to construct an outer approximation of the
underlying dynamical system. The resulting multivalued map can be used to compute the Con-
ley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses
instead a simplicial complex constructed from a witness-landmark relationship. The goal is to
obtain a natural discretization that is more tightly connected with the invariant density of the
time series itself. The time-ordering of the data also directly leads to a map on this simplicial
complex that we call the witness map. We obtain conditions under which this witness map gives
an outer approximation of the dynamics, and thus can be used to compute the Conley index
of isolated invariant sets. The method is illustrated by a simple example using data from the
classical Hénon map.

1 Introduction

Our goal in this paper is to develop some new computational topology techniques to characterize
some aspects of discrete or continuous dynamical systems. We assume that the only knowledge
we have of the dynamics is a finite time series Γ = {x0, x1, . . . , xT−1} taken from a state-space
trajectory of the system. If the system is a map, f : X → X, then Γ is simply the iterates of
the map: xt+1 = f(xt). If the system is a flow, then Γ is a sequence of samples of the continuous
trajectory x(t) and we are effectively studying the evolution operator that maps the system forward
in time. In either case, given this information, we cannot hope to approximate the dynamics on
all of X; instead, we assume that Γ lies close to Λ, a bounded invariant set of f . For example, any
orbit in the basin of an attractor will eventually approach it, so in this case, Γ can be taken to be
the trajectory after a transient is removed. Thus our goal is to develop tools that will allow us to
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characterize properties of f |Λ, such as the number and types of periodic orbits, compute topological
entropy, etc.

The tool that we use is the discrete Conley index (we recall the definition of this index and related
concepts in App. B) [Con78, Eas98, KMM04]. The Conley index characterizes some dynamical
properties of isolated invariant sets of f—for example it may establish the existence of periodic
orbits or give a lower bound on the topological entropy.

Since we only have access to the trajectory Γ, we must use it to obtain an approximation of the
underlying dynamics before we can compute the Conley index. There are two categories of maps
that can serve this purpose. The first, as we recall in §2, are multivalued maps. These are set-valued
and typically defined on a finite covering of a neighborhood of the invariant set Λ; they capture
how the images of the cover map across other elements of the cover. Multivalued maps have most
commonly been defined on cubical grids [MMSR97, MMRS99], but as we discuss in §2.1, more-
general grids can also be used. A multivalued map on a grid, which we call a cellular multivalued
map (CMM) in §2.2, is defined to be constant on the interior of each cell as well as on subsets of
the boundary where groups of cells intersect. Note that while connectivity is obvious in uniform
grids of cubical cells, this may not be the case in other grid geometries. The second category of
map addresses this issue. Dual to any grid, cubical or otherwise, is a simplicial complex—the nerve
of the grid (see App. A). We call the map induced on this complex a simplicial multivalued map
(SMM) in §2.2. When the number of grid cells is finite, such maps are finitely representable: they
can be stored precisely in a computer and used to perform exact computations.

The Conley index for an isolated invariant set (defined in App. B) can be computed using a
corresponding CMM or SMM (techniques are recalled in App. C). Moreover, as described in §2.2, if
the cellular map is semicontinuous and acyclic, then the map that it induces on homology coincides
with that induced by f , and thus it can be used to compute the Conley index of isolated invariant
sets of f .

The associated computational cost of these computations depends on the geometry of the cells.
To minimize this complexity while still preserving the essential features, our approach uses two
constructions that play major roles in computational topology: the α-diagram [EM92, Ede95] and
the witness complex [dSC04]. In §2.3 we recall that the α-diagram of a data set is the intersection
of its Voronoi-diagram with the union of balls of radius α centered on the data points. The nerve
of the α-diagram is the α-complex: it is generically a simplicial complex and is a subset of the
Delaunay triangulation (see App. A), limiting to the latter as α→∞ [Ede95]. Since the geometry
of cells in the α-diagram is dictated by the data, rather than by rectilinear grid lines, the shape of
the α-complex naturally follows that of the invariant set Λ.

While this flexible, data-driven representation has some appealing advantages, an α-complex
constructed from a long time series Γ = {x0, x1, . . . , xT−1} would have at least one simplex for
each point, and the complexity of algorithms that construct and manipulate these objects scales
poorly with the number of simplices. It is useful, then, to represent these data using a global
topological object that contains fewer simplices while preserving the Conley index. We use the
witness complex [dSC04] for this purpose, see §3. Instead of assigning a vertex to each point in Γ,
we represent the data by a smaller set of vertices, a set of landmarks, L ⊂ X, and build a simplicial
complex from those points. As described in §2.3, there are a number of ways to choose landmarks.
The computational complexity of this approach and its comparison to that of a cubical-grid are
discussed in App. D.
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The witness complex is constructed from a relation on Γ×L: each point in Γ may be a witness to
one or more landmarks and each landmark may have one or more witnesses. Of the many possible
definitions of witness relation, we choose one in which a point x ∈ Γ witnesses a set σ ⊂ L if the
distance between x and any landmark in σ is no more than ε greater than the minimum distance
between x and the full set L of landmarks, see §3.1. We use this witness relation to construct an
abstract witness complex. The simplest implementation gives a clique or flag complex: it consists of
simplices whose pairs of vertices have a common witness. As we show in §3.2, if the landmarks are
selected to be sufficiently uniform and the trajectory is sufficiently dense, then there are conditions
under which the witness complex and the α-complex are the same.

The dynamics on the time series induces a simplicial multivalued map on the witness complex.
This SMM also induces a corresponding cellular multivalued map on a grid of α-cells based on the
landmarks. These witness maps, which are a primary contribution of this paper, are described in
§3.3. The construction of the witness map is developed in several steps in §3 in order to bring the
well-developed theory of [KMM04] to bear upon this new formulation and thereby establish the
correspondence between the homology of the witness map and that of the true dynamics of the
underlying system.

Finally, in §4 we use data generated from the classic Hénon quadratic map to give a simple
illustration of the ideas in this paper. We show that, under a verifiable set of assumptions, our
techniques could be used to obtain rigorous results about the underlying dynamical system.

2 Multivalued Maps

In this section we describe the concept of multivalued maps and obtain criteria that imply for such
maps to be an enclosure of a map f . A cellular multivalued map is defined to be constant on each
cell of a grid, generalizing the cubical case of [KMM04]. A cellular map gives rise to a simplicial
multivalued map on the nerve of the grid. In the final part of this section we show that one way
to construct a grid is through an α-diagram. In this case, the nerve is a geometrical simplicial
complex that is a deformation retract of the grid, and we will show that the cellular map and the
simplicial map induce the same maps on homology.

Since we are interested in applications to data sets that correspond to real-valued measurements
of continuous dynamical systems, we will assume that our time series Γ is obtained from a map f
on a submanifold X ⊂ Rn. We will use the Euclidean metric, d(·, ·), on Rn. In the future, it might
be useful to consider more-general metrics on the submanifold X itself.

We begin by recalling some standard definitions for multivalued maps that approximate a
dynamical system.1

Definition (Multivalued Map). A multivalued map, F : X ⇒ X, is a map from X to its power
set. That is, for each x ∈ X, F (x) is a subset of X.

We use multivalued maps to approximate continuous maps f : X → X, and the approximation
is taken to be “good” if the action on homology induced by F is equivalent to that induced by f .
In order for this to be the case, the action of F must enclose the action of f and not introduce any
extra homological structure. These requirements are spelled out in the following definitions.

1Following [DJM04, DFT08], we denote single-valued maps with lower-case letters (e.g., f), sets and set-valued
maps with capital letters, e.g., F , and combinatorial objects and maps with calligraphic letters, e.g. F .
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Definition (Outer Approximation). A multivalued map F : X ⇒ X is an outer approximation
of a continuous map f : X → X if f(x) ∈ F (x) for each x ∈ X. In this case f is said to be a
continuous selector for F .

The (weak) preimage of a multivalued map is itself a multivalued map defined as

F−1(y) = {x ∈ X : y ∈ F (x)}.

Definition (Semicontinuous). A multivalued map is (lower) semicontinuous if the preimage of
each open set is open.

As usual, the n-dimensional homology group of a set X is denoted Hn(X). We use, for simplicity,
the homology over Z2 so that the torsion subgroups are ignored. Given this, a multivalued map
preserves homology if the image of each point is homologous to a point. This is captured in the
following definition.

Definition (Acyclic). A multivalued map F is acyclic if for each x ∈ X,

Hn(F (x)) =

{
Z2 , n = 0
0 , n > 0

.

The key point is that if F is semicontinuous and acyclic, then every continuous selector for F in-
duces the same homomorphism in homology—a consequence of the acyclic carrier theorem [Mun84,
Thm. 13.3].

Definition (Enclosure). A semicontinuous, acyclic, multivalued map F is an enclosure of any
continuous selector f .

Therefore, one can define the homology induced by an enclosure to be that of any of its continuous
selectors.

In order that this homology be computable, however, it is necessary to obtain a finitely repre-
sentable approximation of the map f , and it is this to which we turn next.

2.1 Grids

A grid allows one to construct finitely representable maps that can be outer approximations of a
map f [KMV05, Mro99]. We will consider generalizations of the cubical cells of [KMM04] to a grid
constructed from a collection of cells A = {A1, A2, . . . } in X. Associated with any such collection
is its geometrical realization—the union of these cells as subsets of X—denoted by

|A| :=
⋃
A∈A

A. (1)

Since the shape and number of neighbors of each cell can vary, such a grid may permit more-efficient
computational algorithms than those for cubes of fixed size and shape.2 Nevertheless, many of the
results that appear here are easily adapted from the cubical case.

There are four basic properties for the cells of a grid.

2See App. D for more discussion of algorithms and associated computational complexity issues.
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Definition (Grid [AKK+09]). A family of nonempty compact sets A is a grid on X if

a) X = |A|;

b) for all A ∈ A, A = cl(int(A));

c) for all A,B ∈ A if A 6= B then A ∩ int(B) = ∅; and

d) a finite subset of A covers each compact S ⊂ X.

A prototypical grid is a lattice of closed cubes; indeed, this is the example studied extensively in
[KMM04]. An example of a more-general grid is shown in Fig. 1. The cells in this grid are α-cells,
see §2.3.

A4

A1 A2

A3

A6A5

A8
A9

A7

α

ℓ4

ℓ1 ℓ2

ℓ3

ℓ6
ℓ5

ℓ7

ℓ8 ℓ9

A2

A3

A6
A5

A8

A9

FA

f(A3)

f(A1)

f(x)

x

Figure 1: Sketch of a a grid, Aα(L), of α-cells (see §2.3) based on a set of nine landmarks {li} (red points) and the

action of a cellular map FA (2) on two of these cells. Here the image of any x ∈ int(A1) is A5 ∪A6 ∪A8 ∪A9 and of

any x ∈ int(A3) is A2 ∪A3 ∪A5 ∪A6. If x ∈ A1 ∩A3 then FA(x) = A5 ∪A6.

2.2 Cellular and Simplicial Maps

A cellular multivalued map is a map on the geometrical realization, (1), of a grid A that is constant
on the interior of each cell of A. It generalizes the cubical multivalued map of [KMM04] to a
situation in which the cell boundaries need not be rectilinear.

Definition (Cellular Multivalued Map (CMM)). A multivalued map FA : |A| ⇒ |A| on the
geometrical realization of a grid A is a cellular multivalued map if it is the outer approximation of
f defined by

FA(x) :=
⋂

B∈A :x∈B
{A ∈ A : A ∩ f(B) 6= ∅}. (2)
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The map FA takes the interior of each cell to the union of the cells that intersect its image and
the boundary shared by multiple cells to the cells that contain the intersection of their images.
An illustration is shown in Fig. 1. An implication is that CMMs are semicontinuous because they
map the boundary of each cell to a subset of the image of the cell itself—this is a straightforward
generalization of [KMM04, Prop. 6.17] for the related cubical case.

This construction is not easy to implement on a computer for two reasons: it is a map on
a continuum |A|, and to construct it we must know f(x) for each point x ∈ |A|. The second
problem is addressed by the witness map introduced in §3.3. The first problem can be mitigated
by defining a finite map, F : K ⇒ K, on a complex K related to the grid A. One such complex
is the CW-complex formed from A: that is, the collection of cells {Ai}, together with their faces
{Ai ∩Aj}, their edges, and so forth. An example is the cubical CW-complex used in the approach
of [KMM04]. Since the cellular multivalued map FA is constant on each cell of the CW-complex,
it naturally gives rise to an associated combinatorial map. For example in Fig. 1 the two-cell A1

would be mapped to {A5, A6, A8, A9} and the one-cell represented by A1 ∩A3 would be mapped to
{A5, A6}.

Our goal is to use a more easily described complex that is also naturally suited to homology
calculations: in particular, a simplicial complex. A natural simplicial complex to use is the nerve
N(A), recall App. A. Let L denote a set of labels for the elements of A, and σ = 〈l0, l2, . . . , lk〉 be
any finite subset of L. The intersection of the cells labeled by the elements of σ is denoted

Aσ :=
⋂
l∈σ

Al. (3)

A set σ is a simplex in the nerve when Aσ 6= ∅, thus

K := N(A) = {σ = 〈l0, l1, . . . , lk〉 : Aσ 6= ∅}. (4)

For example, the nerve of the grid in Fig. 1 is shown in Fig. 2.
A cellular multivalued map FA induces a combinatorial map FK on the nerve that is defined to

commute with the correspondence between the grid and its nerve.

Definition (Simplicial Multivalued Map (SMM)). If FA is a CMM (2) on a grid A, the map
FK : K⇒ K, defined by

FK(σ) := {τ : Aτ ⊂ FA(Aσ)} , (5)

is a simplicial multivalued map.

Note that FK is a combinatorial multivalued map. Its domain consists of simplices and its range
of sets of simplices; moreover, FK(σ) is a sub-complex of K (recall App. A). As an example, the
simplicial map induced by the cellular map of Fig. 1 is shown in Fig. 2. In this case, since A〈l1〉 = A1,
then {〈l5, l6, l8〉, 〈l6, l8, l9〉} ⊂ FK(〈l1〉) as are the nine faces of these two 2-simplices. Similarly, since
A〈l1,l3〉 = A1 ∩A3, then FK(〈l1, l3〉) = {〈l5, l6〉, 〈l5〉, 〈l6〉}.

The definition (5) satisfies the closed graph condition:

Lemma 1 (Closed Graph Condition). If FK is an SMM and τ ≤ σ ∈ K (i.e., τ is a face of σ),
then FK(τ) ⊇ FK(σ).
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〈ℓ3〉

〈ℓ1〉

〈ℓ2〉

〈ℓ4〉

〈ℓ7〉

〈ℓ9〉〈ℓ8〉

〈ℓ5〉

〈ℓ5,ℓ6,ℓ8〉

〈ℓ3,ℓ5,ℓ6〉

〈ℓ6,ℓ8,ℓ9〉

〈ℓ6〉

〈ℓ
1 ,ℓ

3 〉

〈ℓ
3 ,ℓ

6 〉

〈ℓ
6 ,ℓ

9 〉

〈ℓ8,ℓ9〉

〈ℓ
5 ,ℓ

8 〉

〈ℓ 3,ℓ
5〉

〈ℓ 2,ℓ 3〉 〈ℓ2 ,ℓ4 〉

〈ℓ
4 ,ℓ

7 〉

〈ℓ 7,ℓ 9〉

FK

FK(〈ℓ1〉)

FK(〈ℓ3〉)
FK(〈ℓ1,ℓ3〉)

〈ℓ6〉

〈ℓ9〉〈ℓ8〉

〈ℓ5〉

〈ℓ3〉

〈ℓ2〉

Figure 2: Simplicial complex Kα(L) that is the nerve of the α-cells of Fig. 1, and the action of the simplicial map

FK (5) on the simplices 〈l1〉 (green), 〈l3〉 (blue) and 〈l1, l3〉 (red).

Proof. Since τ ≤ σ, then by (3) Aτ ⊇ Aσ. Equation (2) implies that FA(Aτ ) ⊇ FA(Aσ), and so by
(5) FK(τ) ⊇ FK(σ).

When the nerve K of a grid A is a geometrical simplicial complex (again, recall App. A),
it induces a natural cellular multivalued map on the geometrical realization |K|, the union of the
convex hull |σ| ∈ Rn of each of its geometrical simplices. The map FK : |K|⇒ |K| is the multivalued
map induced by FK; i.e., by analogy with (2):

FK(x) :=
⋂

σ∈K :x∈|σ|

{|FK(σ)|} (6)

In certain cases, FA and FK contain the same information about homology. We can show this
when the geometric realization of the complex is a (strong) deformation retract of the geometric
realization of the grid, i.e., when |K| ⊂ |A| and there exists a continuous map r : |A|× [0, 1]→ |A|,
such that

r(x, 0) = x,

r(x, t) = x if x ∈ |K|, and

r(x, 1) := ρ(x) ∈ |K|.
(7)

As we will see in §2.3, this assumption can be verified for an α-grid and its nerve. We begin with
the following “partial commutativity” lemma.

Lemma 2. Suppose that K = N(A) is a geometrical simplicial complex. Let FA and FK be cellular
multivalued maps as in (2) and (6). If |K| is a deformation retract of |A| and ρ(Ai) = r(Ai, 1) ⊂ Ai,
then for any x ∈ |A|, (FK ◦ ρ)(x) ⊆ (ρ ◦ FA)(x).
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Proof. Note that since ρ is onto |K| and is the identity on |K|, ρ(Ai) = |K| ∩ Ai and it suffices to
show that for any x ∈ |A|, FK(ρ(x)) ⊆ FA(x). Furthermore, we note that it follows directly from
(5) that for any simplex σ ∈ K, |FK (σ) | ⊂ FA(Aσ). For an x ∈ Aσ, ρ(x) is a point in a geometric
simplex |σ|. Therefore, by (6),

FK(ρ(x)) ⊆ |FK(σ)| ⊆ FA(Aσ)

as required.

This result is exactly what is needed to show that the maps on homology induced by FK and
FA are isomorphic. In particular, we can prove the following:

Theorem 3. Under the hypotheses of Lem. 2, whenever FA is an acyclic multivalued map then FK
induces the same map on homology as FA.

Proof. Whenever FA is an acyclic multivalued map, then the definition (5) implies that FK is as
well. Moreover, since there exists a deformation retract (7), ρ∗ is the identity; thus, the maps ρ◦FA
and FK ◦ ρ are also acyclic. Now, by Lem. 2, FK ◦ ρ is a submap of ρ ◦FA; therefore, it follows that
there is a continuous map u : |A| → |K| that is a continuous selector for both FK ◦ ρ and ρ ◦ FA.
Thus, if v and w are continuous selectors for FK and FA, respectively, then (v ◦ ρ) and (ρ ◦ w)
are continuous selectors carried by (FK ◦ ρ) and (ρ ◦ FA). The acyclic carrier theorem [Mun84,
Thm. 13.3] then implies that

(v ◦ ρ)∗ = u∗ = (ρ ◦ w)∗ ⇒ v∗ ◦ ρ∗ = ρ∗ ◦ w∗ ⇒ v∗ = w∗.

By (2), FA is semicontinuous and an outer approximation of f ; therefore, if FA is acyclic, it
induces a well-defined map on the homology groups such that (FA)∗ = f∗. That is, in order to
determine the Conley index (recall App. B) for an isolated invariant set of f , we need only to know
the map on homology induced by FA and check acyclicity. In App. C, we recall the theoretical
framework and algorithms from [DFT08] that can be used to compute the discrete Conley index
for a multivalued map.

Note that our construction of the cellular multivalued map, FA, is still purely theoretical: since
we only know the points in a time series, we do not know the image of every point in the state
space and thus cannot compute the outer approximation. Without this, there is no direct method
to compute the associated simplicial map FK on the nerve. In §3 we define a new map, the
witness map, that can be computed algorithmically from time-series data. We then provide a set
of conditions under which the witness map and the CMM FA contain the same information about
homology. These results allow us to calculate the Conley index using the witness map rather than
FA.

2.3 α-Diagrams and Complexes

The concepts in the previous sections can be specialized to the case of a grid based on an α-diagram3

for a finite set of landmarks, L = {l1, . . . , l`} ⊂ Rn. Recalling that d(x, y) is the Euclidean metric,

3See App. A for a discussion of α-diagrams and related simplicial complexes.

8



we denote the closed ball of radius α centered at l by

Bα(l) = {x ∈ Rn : d(x, l) ≤ α}, (8)

and the distance from x to a set S ⊂ Rn by d(x, S) = infy∈S d(x, y). For a given α > 0, the α-cell
centered at a landmark point li is the intersection of Bα(li) with the Voronoi cell of li:

Ai(α) := Bα(li) ∩ {x ∈ Rn : d(x, li) ≤ d(x, L)}. (9)

We denote the collection of α-cells for a set of landmarks L by Aα(L). An example of a set of
landmarks and their associated α-cells is shown in Fig. 1.

In our application it will be important to choose the landmarks to cover the time series Γ with
some accuracy; in particular, there should be a landmark within some prescribed distance from
each element of Γ. The landmarks should also be relatively sparse: the minimal distance between
any two should not be too small. These two requirements are linked, as will be discussed in §3. One
selection method, advocated by [dSC04], is to choose the landmarks from Γ itself by a “max-min”
algorithm: choose L recursively by selecting the farthest point in Γ from the previous selection until
the operative density and sparseness requirements are satisfied, if possible. For the simple example
in §4, we do not choose the landmarks from the time series, but uniformly in Rn. The general
problem of finding the most appropriate landmarks in an efficient way is an interesting question
for future investigation.

It is straightforward to show that a collection of α-cells is a grid:

Lemma 4. When α > 0, the set of α-cells Aα(L) is a grid on |Aα(L)|.

This lemma allows us to define a cellular multivalued map (2) for any α-grid with α > 0.
The nerve of an α-diagram is the α-complex denoted

Kα(L) = N(Aα(L)). (10)

Since the α-complex is a nerve, it is always an abstract simplicial complex, and, as for the general
case of §2.2, there is an associated simplicial map FK on (10). Moreover, whenever the vertices li
are in “general position” (recall App. A), Kα(L) is a geometrical complex so that its simplices have
dimension at most n and their intersections are faces. We will always assume that the landmarks
are selected to be in general position.

For this case, Edelsbrunner proved that the geometrical realization of the nerve |Kα(L)| is a
deformation retract, (7), of |Aα(L)| [Ede95].4 He also showed, since the α-cells are convex, that
ρ(·) = r(·, 1) can be chosen to preserve inclusion in each specific cell: ρ(Ai) ⊂ Ai. Thus for an
α-grid, the hypotheses of Lem. 2 hold. Consequently, Thm. 3 implies that whenever the cellular
map FA on an α-grid is an enclosure of a dynamical system f , then the Conley index of an isolated
invariant set can be computed from the map induced by FK on homology.

3 The Witness Complex and Map

In this section, we define a simplicial multivalued witness map FW on a complexW that is a variant
of the witness complexes introduced by [dSC04]. The goal is to obtain an outer approximation of

4See Lem. 10 and the discussion in App. A.
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a continuous map f : X → X when the only data that we have is a time series Γ = {x0, . . . , xT−1}
near an invariant set Λ ⊂ X. To construct a multivalued map that approximates f , we view the
data as “witnesses” to a set of ` nearby landmarks, L = {l1, . . . , l`}. There are many possible
methods to choose appropriate landmarks. One strategy, as mentioned in §2.3, is the max-min
procedure of [dSC04]; but there are many other possible methods, and indeed it is not necessary
that L be a subset of Γ. The landmarks can be viewed either as the centers of the cells of an α-grid
Aα(L), or as the vertices of a witness complex W(Γ, L). We show below that if the data satisfy
certain density criteria and the landmarks are (more or less) uniformly spaced, then there is an α
for which the witness complex is identical to the α-complex Kα(L) = N(Aα(L)).

The temporal ordering of Γ and the witness relation give rise to both an SMM FW and an
associated CMM, FW , on the α-grid. We show that when the map f is Lipschitz and the trajectory
Γ is dense enough, there is an α such that FW is an outer approximation of f .

3.1 Witness Complex

A witness complex is a simplicial complex based on a finite data set Γ that is intended to be more
parsimonious than more traditional Rips or Čech complexes (recall App. A) [dSC04, dS08]. The
vertices of the complex are taken from a set of landmarks L whose cardinality is much smaller
than that of Γ. The complex W(Γ, L) consists of those subsets of L that have a witness in Γ. For
example, de Silva and Carlsson say a point x ∈ Rn is a weak witness to a k-simplex if the k + 1
nearest landmarks to x are the vertices of the simplex. If, in addition, x is equidistant from each
of the vertices, then it is a strong witness to the simplex .

Another way to define witness complexes is through a general construction of Dowker [Dow52]
that associates abstract simplicial complexes with a relation; that is, by the selection of a subset

R ⊂ Γ× L. (11)

For example, the strong witness complex corresponds to the relation R0 = {(x, l) ∈ Γ×L : d(x, l) =
d(x, L)}. We say that a point x is a witness to a point l if (x, l) ∈ R. Thus,

WR(Γ, l) = {x ∈ Γ : (x, l) ∈ R}

is the set of witnesses to the landmark l. Following Dowker, a relation gives rise to two abstract
simplicial complexes, by vertical and horizontal slices, respectively. In our notation, the witness
complex is the former: the vertices of each simplex in the complex share a witness:

⋂
l∈σWR(Γ, l) 6=

∅.
We will use a more easily computed version of the witness complex, a clique complex, which

is the maximal complex with a given set of edges (recall App. A). The clique complex for a given
relation (11) is

WR(Γ, L) = {σ : WR(Γ, l) ∩WR(Γ, l′) 6= ∅, ∀l, l′ ∈ σ}. (12)

Note that, though the vertices of each edge in σ must share a witness, there need not be a common
witness to every vertex in σ.

There are many possible choices for the witness relation R. We choose to use a fuzzy version
of the strong-witness relation:

Rε = {(x, l) ∈ Γ× L : d(x, l) ≤ d(x, L) + ε}. (13)
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That is, x witnesses all landmarks no more than ε farther from x than its nearest landmark.5 The
parameter ε represents the fuzziness of the boundary between cells. The definition (13) becomes
the strong witness relation for ε = 0. We will denote the set of witnesses to a landmark using (13)
by Wε(Γ, l), and the resulting clique complex (12) by Wε(Γ, L).

An example is shown in Fig. 3 for an orbit of the logistic map on [0, 1] for a parameter value
just above the first period-doubling accumulation point. Here, the landmarks were selected to be
every 30th point in the sorted data, an orbit of length T = 300. The relation (13) for ε = 0.01 is
the set of (blue) points near the diagonal. For the case shown, each point in Γ is a witness to at
most two landmarks, and so the maximum dimension of a simplex in the complex (12) is one.

L
R0.01

Γ0.3 0.5

0.5

0.7

0.7

0.9

0.9

0.3

Figure 3: Witnesses (blue points) defined by the relation (13) for the logistic map, f(x) = 3.56x(1 − x) with

ε = 0.01. The orbit Γ, shown along the horizontal axis (black points), has T = 300 points, and there are ` = 10

landmarks, shown along the vertical axes (red points). The witness relation defines six one-dimensional simplices

(the line segments along the vertical axis), giving a complex with Betti number β0 = 4. These correspond to the four

major bands in the chaotic attractor of f .

One way to compute the relation (13) is to sort the rows of the T × ` distance matrix Dtj =
d(xt, lj) in order of increasing size; thus, for the sorted matrix Ds

t,1 = d(xt, L). Then xt is a

witness to all of the landmarks in the first few columns of the tth row of Ds, namely those for
which Ds

t,j ≤ Ds
t,1 + ε. The main computational expense here—the distance calculations—can be

reduced using a kd-tree [FBF77]. In addition, most implementations of efficient k-nearest-neighbor
algorithms return their results sorted in size order. See App. D for more discussion of algorithms
and complexity.

The following section describes how the complex Wε(Γ, L) using the witness relation (13) can
be related to an α-complex using the same landmark set, under some conditions on the selection
of the landmarks and α.

5In the notation of [dSC04], this relation corresponds to the complex W (D, ε, 1), where D denotes the matrix of
distances between landmarks and witnesses.
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3.2 Equivalence Conditions for Kα(L) and Wε(Γ, L)

The witness complex is based on the set of landmarks L in Rn that can also be viewed as the
centers of an α-grid Aα(L). Since the α-diagram limits to the Voronoi-diagram, it is clear that
for large enough α, |Wε(Γ, L)| ⊂ |Aα(L)|. Moreover, for large enough α, the associated α-complex
Kα(L) is a clique complex—just as we have assumed for the fuzzy witness complex using (12). We
will show here that when this is the case—and if the landmarks are not too closely spaced—then
Wε(Γ, L) ⊂ Kα(L). Conversely, when the data Γ are dense enough on |Aα(L)| we will see that
Kα(L) ⊂ Wε(Γ, L). Consequently, when both sets of conditions are satisfied, the complexes are
the same. As the hypotheses to obtain these results are independent, we state these two results
separately.

Theorem 5. For a set of landmarks L, a time series Γ, and α, ε > 0, let Kα(L) be the α-complex
(4) and Wε(Γ, L) be the fuzzy witness complex (12) using the relation (13). Suppose that there is a
δ > 0 such that Γ is δ-dense on |Aα(L)| and δ ≤ ε/2. Then Kα(L) ⊆ Wε(Γ, L).

Proof. Suppose σ ∈ Kα(L), i.e., there is a y ∈ |Aα(L)| such that ∆ = d(y, L) = d(y, li) ≤ α for all
li ∈ σ. We will show that there is an x ∈ Γ that witnesses all the vertices in σ, i.e.,

x ∈
⋂
l∈σ

Wε(Γ, l).

Since Γ is δ-dense, for any y ∈ |Aα(L)|, there is at least one point x ∈ Γ
⋂
Bδ(y). Since d(y, L) = ∆

and d(x, y) ≤ δ, it follows that
d(x, L) ≥ ∆− δ.

Since x ∈ Bδ(y), for any li ∈ σ,

d(x, li) ≤ ∆ + δ ≤ d(x, L) + 2δ ≤ d(x, L) + ε

since δ ≤ ε/2. Hence, x ∈Wε(Γ, li) for each vertex of σ and therefore, σ ∈ Wε.

Note that Thm. 5 applies even when the witness complex is not defined as a clique complex.
However, to show the converse—as we do next—requires the clique assumption and also relies on
the use of the Euclidean metric.

Theorem 6. Suppose Kα(L) and Wε(Γ, L) are as in Thm. 5, and define

M = max
x∈Γ

d(x, L) and β = min
i 6=j

d(li, lj).

If α is chosen so that so that Kα(L) is a clique complex and

M + ε ≤ α ≤ β√
2
, (14)

then Wε(Γ, L) ⊆ Kα(L).
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Proof. Note that Kα(L) and Wε(Γ, L) have the same vertex set, and by assumption each complex
is a clique complex. This means that Kα and Wε are each determined completely by their edges.
It follows that we only need to verify that every edge in Wε is also an edge in Kα.

Supposing that 〈l1, l2〉 ∈ Wε, then these landmarks share a witness, i.e., there is an x ∈ Γ
such that d(x, li) ≤ d(x, L) + ε for i ∈ {1, 2}. We want to show that there is a point y ∈ |Aα(L)|
such that d(y, l1) = d(y, l2) = ∆ = d(y, L) ≤ α. In the Euclidean metric there is always a point
y equidistant from the two landmarks such that d(y, li) = 1

2d(l1, l2). Therefore, since d(l1, l2) ≤
d(x, l1) + d(x, l2) ≤ 2(d(x, L) + ε), then

∆ ≤ d(x, L) + ε ≤M + ε ≤ α,

by (14). Let l3 ∈ L be next closest landmark to y, besides l1 and l2, and define β1 = d(l3, l1),
and β2 = d(l3, l2). As illustrated in Fig. 4, ∆′ = d(l3, y) is minimized when β1 = β2 = β. In this
case, the segment from l3 to y is the perpendicular bisector of the segment from l1 to l2 and so we
have ∆ ≤ ∆′ only if ∆ ≤ β√

2
. Since ∆ ≤ α, this condition is assured by (14), and it follows that

〈l1, l2〉 ∈ Kα. Since Kα is a clique complex we have shown that Wε ⊆ Kα.

β1

β

β

β2

l1

l2

l3

y

Δ

Δ

Δʹ

Figure 4: An illustration of the spacing between three landmarks l1, l2, and l3, as in the proof of Thm. 6. The point

y is the midpoint between the two landmarks l1 and l2. By assumption, the distance from l3 to l1 or l2 is at least β,

and it is thus minimized when β1 = β2 = β.

In order to apply Thm. 6, Kα(L) must be a clique complex, which is not always true. However,
since the Delaunay complex D(L) (recall App. A), is a clique complex (the Voronoi cells cover Rd);
then K∞(L) = D(L) is a clique complex as well. Indeed, whenever α is larger than the radius of
the biggest circumsphere that defines an n-dimensional simplex in D(L), then Kα(L) = D(L). For
the simple case of a hexagonal array of landmarks in R2, these circumcircles all have radius β/

√
3,

so it is easy to determine when Kα(L) is clique. For the trivial case when α < β/2, the α-balls
about each landmark are disjoint, so the α-complex is trivial, and also a clique complex.
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When both Thm. 5 and Thm. 6 hold, then Wε(Γ, L) = Kα(L). In this case, a map defined
using the witness relation may have the same homology as a map on Aα(L). It is to this issue that
we turn next.

3.3 Witness Map

Abstractly, we can define a cellular multivalued map on a grid A(L) that contains the orbit Γ using
any witness relation: whenever x ∈ Ai and there is a witness xt ∈ Γ to the landmark li, then the
image of x should include the cells that xt+1 witnesses. The appropriate map is defined similarly
to the cellular map FA, (2), but only using the data Γ and the witness relation R.

To obtain a cellular map that induces a simplicial map on the witness complex, we assume
that the hypotheses of Thms. 5–6 are satisfied. In this case, there are values of α and ε such that
Kα(L) =Wε(Γ, L).

Definition (Cellular Witness Map). Suppose that α and ε are selected as in Thms. 5–6. The
witness map FW : |Aα(L)| ⇒ |Aα(L)| for the fuzzy witness complex Wε(Γ, L) is the cellular
multivalued map

FW(x) :=
⋂

Ai∈Aα(L) :x∈Ai

{Aj ∈ Aα(L) : ∃xt ∈Wε(Γ, li) s.t. xt+1 ∈Wε(Γ, lj)}. (15)

Since by hypothesis the nerve Kα(L) = N(Aα(L)) is also the witness complex, the CMM FW
induces a simplicial multivalued map

FW :Wε(Γ, L) ⇒Wε(Γ, L)

in precisely the same way that FK was induced by FA, namely by (5). In other words, a simplex
τ ∈ FW(σ) whenever there are witnesses to σ that have images, under the temporal ordering of Γ,
that are witnesses to τ . Indeed, the hypotheses of Thm. 5 imply that each nonempty image simplex
τ ∈ FW(σ), which is automatically in Kα(L) since Aτ 6= ∅, is also in the witness complex, since
Kα(L) ⊂ Wε(Γ, L). Thus to guarantee that the image is in Wε(Γ, L), we need Γ to be sufficiently
dense on the α-shape (δ ≤ ε/2). Under the additional conditions of Thm. 6, the complexes Kα(L)
and Wε(Γ, L) coincide and we can view the witness map as having the domain Wε(Γ, L) as well.
Thus to guarantee that the domain is well-defined we need that the landmarks are more-or-less
uniformly spaced (β is not too small), and that each point in Γ is not too far from a landmark (M
is not too large).

The fact that the α and witness complexes coincide gives us hope that FW will carry the same
information about homology as the outer approximation FA. The following theorem ensures that
this indeed is the case when the original map f satisfies a Lipschitz condition on the grid.

Theorem 7. Suppose that Y = |Aα(L)| is compact and f is Lipschitz on Y with constant c. Then
if Γ is δ-dense on Y and δ ≤ 1

2εmin{1, 1
c}, FW is an outer approximation of f .

Proof. We need to show that for any y ∈ Y , f(y) ∈ FW(y). Note that any such y ∈ Ai for some α-
cell Ai and f(y) ∈ Aj for some other α-cell Aj . We need to show that Aj ⊂ FW(Ai), or specifically,
that there is an xt ∈ Γ such that xt ∈ Wε(Γ, li) and xt+1 = f(xt) ∈ Wε(Γ, lj), where li and lj are
the landmarks associated with the α-cells Ai and Aj , respectively. Since Γ is δ-dense, it follows
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that there is x ∈ Γ with d(x, y) ≤ δ. Thus, x is at most δ closer to any landmark than y (whose
closest landmark is li),

d(x, L) ≥ d(y, li)− δ, (16)

and consequently:
d(x, li) ≤ d(x, y) + d(y, li) ≤ d(x, L) + 2δ, (17)

Since 2δ ≤ ε, it follows that x ∈ Wε(Γ, li). In addition, since d(f(x), f(y)) ≤ cd(x, y) and 2cδ ≤ ε,
the same reasoning as (17) leads to f(x) ∈Wε(Γ, lj).

Note that the points y and f(y) may be in multiple α-cells, but the construction above applies
to each cell, and so the conclusion is unaffected.

We have shown that, under the conditions of Thms. 5–7:

• the witness complex computed from data has the same homology as the union of a set of
α-cells that cover the data, and

• when viewed as a multivalued map on Rn, FW is an outer approximation of the dynamical
system f .

Since the cellular map FW is semicontinuous (recall §2.2), we know that whenever it is acyclic,
then it is an enclosure of f . In this case, the acyclic carrier theorem implies that the induced
map on homology can be computed from any continuous selector to the witness map [Mun84,
Thm. 13.3]. However, note that acyclicity cannot be guaranteed; it must be checked when the map
is numerically constructed.

3.4 Computing the Map on Homology

In our approach, all of the information about the topology of the invariant set Λ ⊂ X is contained
in the simplicial complexW =Wε(Γ, L), so our computation of the map f∗, the action induced by f
on the homology groups, relies heavily on this simplicial complex. We begin by recalling the notion
of a chain map. A chain map from one simplicial complex to another consists of a homomorphism
between the vertex sets, a homomorphism between the edge sets, etc., each of which commutes
with the boundary operator. Commutation implies, for example, that the boundary of the image
of a k-simplex is mapped to the image of the boundary of the k-simplex. An important feature of
a chain map, ϕ, is that it induces a well-defined map in homology, ϕ∗ [Mun84].

Our strategy in calculating f∗ is to pick an appropriate chain map, ϕ, so that f∗ coincides with
ϕ∗. That is, we select ϕ : W → W to be a chain selector, so that ϕ(σ) ∈ FW(σ) for each σ ∈ K.
Such a selector can easily be constructed using as a piecewise linear map between the topological
realizations of the simplicial complexes. That is, we consider |ϕ| : |W| → |W|. If ϕ is a chain
selector for the simplicial multivalued map FW , then it follows that |ϕ| is a continuous selector for
FW and hence, ϕ∗ = f∗.

In summary, the strategy is as follows. To compute the Conley index of an isolated invariant
set, it is sufficient to construct a cellular multivalued map FA that encloses f . Yet computing the
α-grid on a given data set and its associated cellular multivalued map FA can be computationally
expensive. In this section, we have shown how to construct a sparser simplicial complex—the
witness complex Wε(Γ, L). In addition, we define two associated multivalued witness maps - the
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cellular map, FW , defined implicitly on |Aα(L)| and the combinatorial simplicial map, FW , defined
on the finitely determined complex Wε(Γ, L). Moreover, when the hypotheses of the theorems in
this section can be verified, thenWε(Γ, L) = Kα(L) and FW encloses the dynamical system f . Then
any continuous selector for this map will capture the homomorphism on homology f∗. We get this
continuous selector of FW by constructing a continuous selector of FW and taking its geometric
realization.

4 An example: The Hénon Map

The procedure for putting the mathematics of the previous sections into practice on time-series
data from a dynamical system is as follows:

1. Given a time series Γ = {x0, . . . , xT−1} ⊂ X, which we assume lies near an invariant set
Λ ⊆ X, select a set of landmarks, L = {l0, . . . , l`−1}, that are evenly distributed across Λ (cf.,
page 10 and App. C). These landmarks will be the vertices of a simplicial complex.

2. Choose a value for the ε parameter that satisfies the requirement (14) for Thm. 6 and use
witness/landmark relationships to simultaneously define a simplicial complex Wε(Γ, L) and
a simplicial multivalued map, FW . Note that, even though we never need to construct an
α-complex, (14) implies that there is an α that has the same homology as W.

3. Pick a subset of L as a starting guess for an isolated invariant set and use Algs. 11, 12, and
14 of App. C to find an index pair (|N |, |E|) for f . There are many different strategies for
choosing the initial guess; if one is attempting to find periodic orbits, for instance, it makes
sense to search for recurrent points in the time series and use the nearest landmark as the
starting point for the algorithms. The important property is that the guess should be a subset
of its period-image under the simplicial multivalued map.

4. Use a chain selector for FW to calculate f∗ : H∗(|N |, |E|)→ H∗(|N |, |E|).

In the rest of this section, we illustrate this procedure on Hénon’s classic map [Hén76]:

f(x, y) = (y + 1− 1.4x2, 0.3x). (18)

This map has an invariant set Λ that is an attractor, and we generate a trajectory Γ of length
T = 105 that starts from the initial condition z0 = (−0.4, 0.3), near Λ. The trajectory is shown
in Fig. 5. As a simple test of the witness map technique presented in the previous section, we use
this trajectory to verify the trivial fact that f has a fixed point. We will assume that Γ is an exact
trajectory of (18), making no claim that our computation is rigorous. The latter could, at least
in principle, be done using interval arithmetic. Given (18), of course, a simple calculation shows
that this system has two fixed points. Our goal is to find one of those fixed points using only the
time series Γ. Note that this is a proof-of-concept example, not an exhaustive exploration of the
parameter space of the algorithm. Moreover, it is simple enough that the homology calculations
can be carried out by hand.

We begin by selecting a set of landmarks to approximate the attractor Λ. Again, as a proof of
principle, we simply space these landmarks evenly within the bounding box of the orbit [−1.5, 1.5]×
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Figure 5: Time-series data, Γ, comprising 105 iterates of the Hénon map (18) (grey points) from an initial condition

near the attractor, and the set L of 216 evenly spaced landmarks (blue circles) that approximate the attractor from

which Γ was sampled. Note that the vertical and horizontal scales are different.

[−0.4, 0.4]. With the goal of reflecting the structure of the attractor and yet having significantly
fewer landmarks than points on the orbit (`� T ), we use a hexagonal grid with spacing β = 0.05.
Indeed, retaining only those landmarks that are within β of a time-series point gives ` = 216
landmarks (so ` ∼

√
T ), as shown in Fig. 5. This has the effect of distributing the landmarks across

the attractor with enough resolution to detect some of its fractal structure.
The next step in the process is to define witness-landmark relationRε of equation (13). Although

we do not need to build an α-complex, it is possible to do so when the requirement (14) is satisfied.
For example, given the hexagonal geometry, the α-complex will be a clique complex when α < β/2—
i.e., when it is trivially totally disconnected—or when α ≥ β/

√
3, the distance from a vertex to the

center of the equilateral triangle of side β. Similarly, by construction, every data point is in one of
the equilateral triangles formed from the landmarks, i.e., M ≤ β√

3
. The requirement (14) is then

satisfied if we choose α = β/
√

2, and

ε ≤
(

1√
2
− 1√

3

)
β.

Recall that given an ε ≥ 0, a pair (xt, lj) ∈ Rε ⊂ Γ× L (xt ∈ Wε(Γ, lj)), according to (13), if and
only if d(xt, lj) ≤ d(xt, L)+ε. This witness relationship serves to define a clique complexWε(Γ, L),
by (12): the edge 〈li, lj〉 ∈ Wε if and only if Wε(Γ, li)∩Wε(Γ, lj) 6= ∅. By varying ε up to the bound
above and looking at the resulting complexes, we finally selected ε = 0.005; this is large enough
so that the complex is connected, but small enough that the shape of the complex still reflects the
primary fold in the attractor. The resulting complex is shown in Fig. 6.
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Having built the witness complex, we then construct the cellular multivalued map FW : |Aα(L)|⇒
|Aα(L)| using the witness-landmark relationships, as described by (15). Next we use the time series
to search for an isolating neighborhood for FW . To apply Alg. 12, we need a guess for an isolating
neighborhood. For a periodic orbit, this can be found by looking for nearly recurrent points in
the time series [LK89]. Consequently, to choose an initial guess for the purpose of finding a fixed
point, we can simply search for a time t that minimizes d(xt, xt+1). Following this approach, we
find that x39,436 = (0.6313, 0.1894) is a good candidate—indeed, it is close to the analytical fixed
point (x∗, y∗) ≈ (0.6313544771, 0.1894063431). The cell of the landmark nearest to this point gives
a useful initial guess for the isolating neighborhood for Alg. 12. This isolating neighborhood is then
used as the input of Alg. 14 to obtain an index pair (N,E) for the fixed point of f . The result is
shown in Fig. 6.

x

y

0.4

0

0.2

1.5
−0.4

−0.2

0 0.5 1−1.5 −1 −0.5

Figure 6: Witness complex and an index pair (N,E) for the fixed point of the Hénon map. The points correspond

to the landmarks, L, the blue squares represent the isolating neighborhood N \ E and the red triangles are the exit

set E. The witness complex corresponds to the landmarks, the lines, and the grey triangles.

The final step is to calculate the Conley index of the isolated invariant set that is the invariant
part of N \E. From this index, we can then infer the existence of a fixed point. We begin by taking
a close look at the map FW restricted to the index pair (N,E). The index pair is shown in Fig. 6.
Recall that FW is a map that is constant on α-cells. Though we do not need to compute these
α-cells, visualizing them—as in the sketch shown in Fig. 7—helps in understanding the various
multivalued maps involved in this process. In Fig. 7, N = {A1, . . . , A9} and E = {A1, A2, A7, A8}.
The blue and red landmarks are the nexuses of the α-cells that make up N \E and E, respectively.

18



In this example, the map FW restricted to the index pair can be described by the following
transition matrix:

S =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 1 1
0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0


, (19)

where Sij = 1 if and only if Aj ⊂ FW(int(Ai))—i.e., there is a witness of the landmark associated
with Ai whose image under the shift map is a witness of the landmark associated with Aj . For
example FW(A6) = A2 ∪ A3 ∪ A8 ∪ A9. Geometrically, this image is a disk, and is thus acyclic.
Indeed, it is straightforward—if tedious—to verify from (19) that each cell maps to an acyclic set
under the witness map FW |N . Moreover, by (15), whenever x ∈ Ai∩Aj , it has an image that is the
intersection of the images of the individual cells. In this way, one can compute the images under
FW of the twelve one-dimensional simplices in the index pair. These images, inferred from (19), can
be verified to be acyclic when restricted to N . Finally only one of the two-simplices in N remains
in N under the map, namely FW (〈l3, l4, l9〉) = 〈l6, l7〉; this image has no homology. Consequently,
the map FW is acyclic on the index pair. This condition is sufficient for our limited purpose here of
verifying that f has a fixed point in N . More generally, the acyclicity of the witness maps on the
entire complex could easily be automated—as is done for cubical complexes in the software package
“CHomP” [Mis14].

A2

A1

A3 A4 A5

A6 A7

A8 A9

Figure 7: The witness complex (grey triangles, black lines, and dots) for the index pair (N,E) for the landmarks

from Fig. 6. In this case, the witness complex is also the nerve of the α-cells (shown as truncated red and blue

spheres in the figure) since (14) is satisfied. Dashed lines show the analytical image of the simplicial complex under

the Hénon map (18). The black square is the fixed point.

Now, we want to represent this index pair with a corresponding simplicial complex W(N,E)—
specifically, the witness complex associated with the landmarks {l1, . . . , l9}, corresponding to α-cells
{A1, . . . , A9}. The witness complex W(N,E), which is also the α-complex in this case, is pictured
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in Fig. 7. In order to compute the Conley index, we need a simplicial complex that represents the
quotient space N/E. Since the α-cells A1, A2, A7, and A8 make up the exit set E, we make the
identification

l1 ∼= l7 ∼= l2 ∼= l8 := E.

The resulting simplicial complex is shown in Fig. 8. The homology of the simplicial complex
K(N,E) can easily be computed by hand in this example. In particular, the quotient space N/E
consists of a single connected component so H∗0(N,E) = Z2. The quotient space has a single,
nonbounding cycle:

σ = 〈E, l3〉+ 〈l3, l4〉+ 〈l4, l5〉+ 〈l5, l6〉+ 〈l6, E〉,

so H∗1(N,E) = Z2.

l4

l5

l9 l3

l6

E

Figure 8: The quotient simplicial complex N \ E, where N is the simplicial complex shown in Fig. 7 and E =

{l1, l2, l7, l8}.

We are now ready to compute the Conley index of the isolating neighborhood N \E. Specifically,
we compute f∗ : H∗(N,E) → H∗(N,E). As described in the previous section, the homology of
f is equivalent to the homology of ϕ, where ϕ is a chain selector for FW . Therefore, in order to
compute the Conley index, we need to find ϕ∗([σ]) := [ϕ(σ)].

The chain selector ϕ is defined inductively by first determining the image of each vertex in
K(N,E) (to be enclosed by FW), and then determining the image of each edge so that ϕ commutes
with the boundary operator. In addition, recall that FW on the quotient space must be an enclosure
of the index map fN . We begin with the initial assignment of vertices:

〈i〉 〈E〉 〈l3〉 〈l4〉 〈l5〉 〈l6〉 〈l9〉
ϕ0(〈li〉) 〈E〉 〈l6〉 〈l5〉 〈l3〉 〈l9〉 〈l6〉

To compute ϕ(σ), we need to find the images of the edges in σ as well. In order for ϕ to be a
chain selector for FW , the image of each edge, τ , must be a subset of FW(τ). Furthermore, ϕ must
commute with the boundary operator, so we need ϕ0 ◦∂1 = ∂1 ◦ϕ1. Those two conditions yield the
following edge assignments:

τ 〈E, l3〉 〈l3, l4〉 〈l4, l5〉 〈l5, l6〉 〈l6, E〉
ϕ1(τ) 〈E, l6〉 〈l6, l5〉 〈l5, l4〉+ 〈l4, l3〉 〈l3, l9〉 〈l9, E〉
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It follows that ϕ(σ) = σ (in Z2 homology). Since this map is not nilpotent, then it is not in the
shift equivalence class of [0] and thus the invariant set S = inv(N \E, f) 6= ∅ [KMM04, Thm 10.91].

With this very simple example, we have illustrated that the witness complex and the associated
witness map can be used to compute the Conley index for a simple of isolating neighborhood. We
plan in the future to apply this method to more-complex and higher-dimensional dynamics.

5 Conclusions & Future Work

Computational topology is a powerful way to analyze time-series data from dynamical systems.
Existing approaches to the approximation of a dynamical system on algebraic objects construct
multivalued maps from the time series using cubical discretizations, then use those maps to compute
the Conley indices for isolated invariant sets of cubes. The approach described in this paper, by
contrast, discretizes the dynamics using a simplicial complex that is constructed from a witness-
landmark relationship. A natural discretization like this, whose cell geometry is derived from the
data, is more parsimonious and thus potentially more computationally efficient than a cubical
complex. We then use the temporal ordering of the data to construct a map on this simplicial
witness complex that we call the witness map. Under the conditions established in §3.3, this
witness map gives an outer approximation of the dynamics, and thus can be used to compute the
Conley index of isolated invariant sets in the data.

As a proof of concept, we applied our methods to data from the classic Hénon map and located
an isolating neighborhood for a fixed point of this dynamical system. There are many other potential
applications in the study of dynamical systems. Our approach could also be used to find periodic
orbits as well as connecting orbits between them—a strategy that ultimately leads to rigorous
verification of chaotic dynamics.

An important question that we leave open is: can one develop rigorous computational methods
for multivalued maps based on simplicial complexes? While interval arithmetic has been done for
cubical complexes [DFT08], an approach based on the selection of an appropriate value of ε to
account for finite precision arithmetic might be appropriate.

In the future we also hope to explore the application of these techniques to scalar time-series
data sampled from a dynamical system. In this case, delay-coordinate embedding [PCFS80, Tak81,
SYC91] can be used to create a trajectory Γ of the form required by our methods. Of course, noise
becomes an issue in any consideration of experimental data. In the case of bounded noise, it may
be possible to turn our ε parameter to advantage—in the same spirit as in [MMRS99], where the
size of the cells in the multivalued map is chosen to account for the experimental error.

Our techniques may also have significant impact in the numerical simulation of differential
equations. In [MM95], numerical integration—while keeping track of the magnitude of round-off
error—is used to prove that there is chaos present in the Lorenz equations [Lor63]. A key step in
this proof is showing that one can construct a multivalued map that is truly an outer approximation
of a given function f . Theorem 7 indicates that our techniques are appropriate for these types of
proofs. The computational efficiency that the data-driven discretization confers upon the witness-
map construction process should allow this approach to scale well with dimension, so it is likely
that constructions based on this map could be used to generate computer-based proofs about
high-dimensional differential equations. This would be a significant advance in the field.

A large body of research in the field of computational topology has revolved around the concept
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of persistence [DE95, EH08, Ghr08, Rob99]. The idea behind topological persistence is that many
computations in this field depend upon simple scale parameters. For example, the α-complex of a
point cloud depends upon the parameter α, the fuzzy witness complex depends upon the parameter
ε, etc. It makes sense, then, to perform these calculations over a range of parameter values and to
search for intervals where the topological properties remain constant. This was the rationale for
the choice of ε in §4. A major area for future research is the development of a theory of persistence
in the context of Conley index theory. We believe that contribution described in this paper is a
significant step in this direction.
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Appendices

A Simplicial Complexes for Discrete Data

An abstract simplicial complex K is a collection of finite, ordered subsets σ = 〈li0 , . . . lik〉 in the
power set, 2L, of a set of vertices L such that if τ ≤ σ is a “face” of σ (it contains only vertices
also in σ), then it is also a simplex in K. The vertices, 〈li〉, are zero-simplices; edges, 〈li, lj〉, are
one-simplices, etc. The empty set is a face of every simplex. For points li ∈ Rn, the geometrical
realization of a simplex, |σ|, is the convex hull of its vertices. A geometrical simplicial complex is an
abstract complex K such that each intersection |σ| ∩ |τ | of simplices in K is a face of both [Ede95].

A simplicial complex L is a sub-complex of K if every simplex in L is in K. The k-skeleton of
K is the sub-complex containing all simplices of dimension k or less. Thus a one-skeleton is the
graph formed from the vertices and edges.

A clique (or flag) complex is the maximal complex with a given set of edges [Zom10] (called a
“lazy” complex by [dSC04]). Thus a clique complex is determined by its one-skeleton.

The nerve N(A) of a collection of setsA is an abstract simplicial complex constructed from finite
intersections. The vertices, li ∈ L, are labels for the elements Ai ∈ A, and a simplex σ = 〈l0, . . . , lk〉
is in the nerve if the k + 1 corresponding sets have nonempty intersection:

N(A) = {σ :
⋂
li∈σ

Ai 6= ∅}.

Thus each vertex in the nerve corresponds to the label li of the cell Ai, and each edge 〈li, lj〉 to a
nonempty intersection Ai ∩Aj , etc. It was shown by Karol Borsuk and André Weil that, in certain
cases, the nerve has the same homology or homotopy type as the geometrical realization of the
collection A:

Lemma 8 (Nerve Lemma [Bor48, Wei52, BT82, Hat02]). Let A be a collection of closed sets such
that every finite intersection between its members is either empty or contractible. Then N(A) has
the same homotopy type as |A|.

There are many natural ways of defining simplicial complexes for a finite point set L =
{l1, l2, . . . , l`} ⊂ Rn. If A = {Br(l) : l ∈ L} is the collection of closed radius-r balls (8) around the
set of landmarks, then the Čech complex, Cr(L), is the nerve of A. Since the balls are convex subsets
of Rn, the nerve lemma implies that C has the same homotopy type as |A|. The sequence of Čech
complexes is nested: Cr(L) ⊆ Cr′(L) when r < r′. A similar complex, the Rips (or Vietoris-Rips)
complex, Rr(L), consists of all simplices whose vertices are pairwise within a distance r of each
other:

Rr(L) = {σ : d(l, l′) ≤ r, ∀ l, l′ ∈ σ}.

Since this complex is determined by its edges, it is a clique complex. Rips complexes are also nested
as r grows, and, moreover, they are interleaved with Čech complexes:

Rr′(L) ⊂ Cr(L) ⊂ R2r(L)

whenever r′ < r
√

2(n+ 1)/n [Ghr08, dSG07]. This gives a relation between the persistent homolo-
gies of the family of Rips complexes and the family of Čech complexes.
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The Voronoi diagram V(L) = {Vl : l ∈ L} is the covering of Rn by the cells

Vl = {x ∈ Rn : d(x, l) ≤ d(x, l′), ∀l′ ∈ L}.

Note that each Voronoi cell is convex, since it is the intersection of half-spaces, and two such cells
are either disjoint or they meet on a portion of their boundaries. The associated simplicial complex
is the Delaunay complex D(L) = N(V(L)), the nerve of the Voronoi diagram. When the points
L are in “general position” (no more than n + 1 points lie on any (n − 1)-sphere) then D(L) is
a geometrical complex [Ede95]. Since this is generically true, general position can be achieved by
almost any, arbitrarily small perturbation of the points in L. Thus it is common to assume L is in
general position.

The cells in the α-diagram are the intersection of the Voronoi cells with a closed ball of radius
α about a vertex:

Aα(L) = {Vl ∩Bα(l) : l ∈ L}

The corresponding nerve is the α-complex, Kα(L) = N(Aα(L)). An alternative characterization is
that σ ∈ Kα(L) if there exists a ball Br(x0) with r ≤ α that contains no vertices in its interior,
int(Br(x0))∩L = ∅, but for which σ ⊂ ∂Br(x0). The boundary of such a ball is called a circumsphere
for σ. For the Euclidean metric, each α-cell is convex, since it is the intersection of convex sets.
Thus the nerve lemma implies that |Kα(L)| is homotopy equivalent to |Aα(L)|. Note that the
α-complex is the intersection of the Čech complex and the Delaunay complex,

Kα(L) = Cα(L) ∩ D(L),

so it is a sub-complex of each. Moreover, as α→∞, Kα(L)→ D(L).
A subset A ⊂ X, is a deformation retract of X if there exists a continuous map r : X × I → X

satisfying (7). The restriction ρ : X → A defined by ρ(·) = r(·, 1) is then a retraction of X onto A.
If A is a deformation retract of X then it is homotopy equivalent to X. More generally, two spaces
A and B are homotopy equivalent iff there is a space X and embeddings a : A→ X and b : B → X
such that both a(A) and b(B) are deformation retracts of X [Hat02, Cor. O.21].

In fact the α-shape, |Kα(L)|, is a deformation retraction of the α-grid |Aα(L)| [Ede95]. There
are two parts to Edelsbrunner’s result, and we give only a brief discussion of the ideas in his paper.

Lemma 9. For any α ≥ 0 and any finite set of landmarks L ⊂ Rn in general position, |Kα(L)| ⊂
|Aα(L)|.

This follows because when a collection of α-cells mutually intersect, i.e., when Aσ 6= 0, they
must do so at a point x in the interior of |σ| (viewed as a subset of its spanning k-plane). The proof
proceeds by induction (it is easy for 0-simplices), and uses the facts that the union S(σ) = ∪l∈σAl
is star-convex, relative to x, and that |σ| is itself convex. The implication is that |σ| ⊂ S(σ) for
each simplex in Kα(L). The result is used to construct the deformation retract.

Lemma 10. For any α ≥ 0 and any finite set of landmarks L ⊂ Rn in general position, |Kα(L)|
is a deformation retract of |Aα(L)|.

The construction of a deformation retract is based on planes that are orthogonal to points on
simplices that are on the boundary of |Kα(L)| (for points in the interior, the deformation is the
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identity map). If σ is a k-simplex then each point in its interior is the intersection of the k-plane
containing |σ| and the (n − k)-plane that is its orthogonal complement. Convexity implies that
these families of orthogonal (n − k)-planes cover |Aα(L)| \ |Kα(L)|, and each point in this set lies
in exactly one such plane. The deformation is defined as linear flow from the boundary of |Aα(L)|
to the boundary of |Kα(L)|. A consequence of this construction is that the deformation maintains
membership in each α-cell: r(Ai, t) ⊂ Ai. This last property is an hypothesis for Lem. 2.

B Discrete Conley Index

A key tool in computational topology is the Conley index [Con78], which can be expressed in terms
of the algebraic topology of a pair of sets that are acted upon by a map f . Given the Conley index of
such a pair one can sometimes prove the existence of fixed points, periodic orbits and equivalence to
shift dynamics for the dynamics of on invariant set. In this appendix we briefly recall the definition
of the index and some related concepts; for more details see [Eas98, MM02, KMM04].

Given a homeomorphism f : X → X, a set Λ is invariant if f(Λ) = Λ. The maximal invariant
set contained in a set K is

inv(K) = {x ∈ K : f t(x) ∈ K, ∀ t ∈ Z},

which, of course, could be empty. A compact set K is an isolating neighborhood if the subset that
remains in K for all time is contained in its interior: inv(K) ⊂ int(K). Similarly, a set S is an
isolated invariant set of f when it is the maximal invariant set in the interior of some isolating
neighborhood K: S = inv(K) ⊂ int(K).

The computation of the Conley index relies on the construction of an index pair that gives rise
to an isolating neighborhood [MM02]:

Definition (Index Pair). A pair of compact sets P = (N,E) with E ⊂ N ⊂ X is called an index
pair for S = inv(N \ E) relative to f if it satisfies the following three properties.

• cl(N \ E) is an isolating neighborhood.

• f(E) ∩N ⊆ E.

• f(N \ E) ⊂ N .

These three properties are illustrated in Fig. 9. The first states that that the set K = cl(N \E) is
an isolating neighborhood that isolates some (possibly empty) invariant set S. The second property
implies that once a trajectory enters E, it will not return to K before leaving the index pair entirely.
The third property states that E contains the exit set of N : that is, the images of points not in
E must remain in N . It is possible to show that every isolated invariant set S has an index pair
[FR00].

For any index pair P = (N,E) there is a quotient space N/E with the equivalence relation
[x] = [y] if x, y ∈ E. A continuous index map, fP can be defined on N/E by

fP ([x]) =

{
f(x), if x, f(x) ∈ N \ E
[E], otherwise

,
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KE E

f(E) f(E)f(K)

f –1(K)

Figure 9: An index pair N = K ∪E (a square) and E (two rectangles). The image of E either leaves N or remains

in E. For this picture the isolating neighborhood K is guaranteed to contain a fixed point. A simple map with this

index pair is f(x, y) = (ax, by) with a > 1 > b > 0.

A complication is that two index pairs P , P ′ for the same isolated invariant set can have topolog-
ically distinct quotient spaces and index maps that are not homotopic. However, any such index
maps induce shift equivalent maps on the homology group H∗(N,E) of N relative to E. Shift equiv-
alence is a less-rigid version of conjugacy for non-invertible maps that was introduced by Robert
Williams and used in the definition of the discrete Conley index by Franks and Richeson [FR00].

Definition (Shift Equivalence). A pair of endomorphisms f : X → X and g : Y → Y are shift
equivalent if there exist continuous maps h : X → Y and k : Y → X such that h ◦ f = g ◦ h and
f ◦ k = k ◦ g, and there exists an m ∈ N such that h ◦ k = gm and k ◦ h = fm.

Note that if f and g are homeomorphisms, they are shift equivalence if and only if they are
conjugate, with the conjugacy defined by c = h ◦ f−m = g−m ◦ h, and c−1 = k.

The point is that for any two index pairs (N,E), (N ′, E′) that isolate the same invariant set, the
maps on homology fN∗ and fN ′∗ are shift equivalent [FR00]. This shift equivalence class, [fP∗]s, is
the discrete homology Conley index Con(S, f) of the invariant set S isolated by K.

One of the fundamental advantages of the Conley index is its structural stability; for example,
if K is an isolating neighborhood for f , then there is ε > 0 such that K is also an isolating
neighborhood for f̃ , whenever ‖f− f̃‖∞ < ε. Moreover, so long as an invariant set remains isolated
by K, its Conley index does not change [MM02].

The simplest implication of a nontrivial Conley index is the Wazewski property : whenever
Con(S, f) 6= [0], then S 6= ∅ [KMM04, Thm 10.91]. In addition, periodic orbits are guaranteed
when the “Lefschetz number” is nonzero [KMM04, Thm 10.46], and (for C∞ maps) the topological
entropy is positive whenever the shift equivalence class of fP has spectral radius greater than one
[Bak02].
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C Computing the Conley Index

In order to use the Conley index to obtain information about a map f , we start by using a multival-
ued map FA or FW to locate isolating neighborhoods for f . Since the construction of the CMM is
analogous to the cubical map of [KMM04], we borrow the presentation as well as relevant theorems
and algorithms from that work and from [DFT08]. In most cases, the proofs of the theorems in
this section are identical to those in the original citations if one simply substitutes the concept of
a grid-cell for that of a cube. A thorough treatment of these results—with respect to any grid
satisfying the first definition in Section 2.1—can be found in [Mro99]. Our goal is to move beyond
the cubical complexes used in previous work and devise a method to efficiently build a simplicial
multivalued map that contains the same information as the cellular multivalued map.

We begin by defining trajectories and invariant sets for the multivalued map, following [DJM04,
DFT08].

Definition (Combinatorial Trajectory). A combinatorial trajectory of FA through A ∈ A is a
bi-infinite sequence of cells, ΓA = (. . . , A(−1), A(0), A(1), . . .), such that A(0) = A and A(n+1) ⊆
FA(A(n)) for all n ∈ Z.

Definition (Combinatorial Invariance). Given a cellular multivalued map FA : |A| ⇒ |A|, the
combinatorial invariant part of N ⊂ A is defined by

inv(N,FA) := {A ∈ A : ∃ a trajectory ΓA for which A(n) ⊂ N for all n ∈ Z}

The following algorithm can be used to locate the combinatorial invariant part of a compact set N .

Algorithm 11. invariantPart(N,FA)

S ← N
repeat
S′ ← S
S ← FA(S) ∩ S ∩ F−1

A (S)
until S = S′

return S

It is proved in [KMM04, Thm 10.83]—in the context of cubical sets—that ifN is finite this algorithm
terminates and returns inv(N,FA) (which could be empty). The extension to the cellular case is
straightforward.

Associated with this notion of invariance, there is a property of isolation, which is defined using:

Definition (Combinatorial Neighborhood). The combinatorial neighborhood of a set S ⊂ A is

o(S) := {B ∈ A : B ∩ S 6= ∅}.

More plainly, the combinatorial neighborhood consists of S and all of the cells that touch its
boundary. In order for a combinatorial invariant set to be isolated, it must be the invariant set of
some neighborhood.

Definition (Combinatorial Isolating Neighborhood). A set K ⊂ A is a combinatorial isolating
neighborhood if

o(inv(K,FA)) ⊆ K
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Given a guess, K, for such a neighborhood, we might be able to find an isolating one by growing
it: if K ′ = inv(o(K), FA) ⊂ K, then K is isolating, otherwise we replace K by K ′ and repeat. For
example, in §4 where we are looking for a fixed point, we use the cell containing a nearly recurrent
point as the initial guess. This leads to the algorithm of [DJM04, DFT08]:

Algorithm 12. growIsolating(K,FA)

while inv(o(K), FA) 6⊂ K do
K ← inv(o(K), FA)
if K ∩ ∂|A| 6= ∅ then

return ∅
end if

end while
return K

If growIsolating is called with a combinatorial set K ⊂ A and a cellular multivalued map FA, then
it returns a combinatorial isolating neighborhood for FA—or else it fails when K intersects the
boundary of the grid A. A sufficient condition for this not to occur is that |A| is itself an isolating
neighborhood because then each cell that touches the boundary of |A| has a neighborhood whose
invariant part is contained in |A|.

An important point is that when K is isolating for FA, then under certain conditions, |K| is
isolating for any continuous selector f of FA:

Theorem 13. Let FA : |A| ⇒ |A| be a cellular multivalued map for f . Then if K ⊂ A is a
combinatorial isolating neighborhood for FA, |K| is an isolating neighborhood for f .

This is essentially [KMM04, Thm 10.87], generalized to the cellular case.
The computation of the Conley index begins with an isolating neighborhood K of a cellular

multivalued map, with the goal of finding a pair of sets (N,E) that satisfy the definition of an
index pair. We compute these using the following algorithm.

Algorithm 14. indexPair(K,FA)

S ← inv(K,FA)
C ← o(S) \ S
E ← FA(S) ∩ C
repeat
E′ ← E
E ← FA(E) ∩ C ∩ E′

until E = E′

N ← S ∪ E
return (N,E)

This is similar to Alg. 10.86 in [KMM04] which was stated for cubical sets. It was proven there that if
this algorithm is called with a combinatorial isolating neighborhood K and an outer approximation
FA of f , then the geometric realization of the pair it returns is an index pair for f . This proof can
be adapted to the cellular-map situation.

Given an index pair (|N |, |E|) for f , the computation of the discrete Conley index reduces to
finding a representative of the shift equivalence class [fP∗]s and its action on the relative homology
groups, H∗(|N |, |E|).
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D Computational Complexity

To analyze the computational complexity of the approach proposed in this paper, and compare it
to that of the cubical-grid version of [KMM04], one must consider both run time and memory use.

In the cubical-grid case, all of the cells that are occupied by data points must be processed in
order to compute the homology. The run time costs of this have two components. Determining
whether an individual data point is in a particular cell in a d-dimensional cubical grid is a matter
of evaluating 2d inequalities: the computational cost is O(d). Constructing the multivalued map
requires checking the images of the 2d grid squares that touch the corner points of the occupied
cells and iteratively expanding that set until there are no empty intersections [MMRS99]. This
iterative expansion step can be a significant computational expense. Finding an isolated invariant
set can require iteratively checking the forward and backward images of the neighboring cells in
the grid (cf. Alg. 12). This too can require significant computational effort.

The witness-complex approach sidesteps all of this complexity in two ways: first, by using a sub-
set of the data; second, by building a simplicial complex from those landmarks. The computational
costs of this approach are balanced differently than in the cubical grid case: building the complex is
harder but using it is easier. In particular, constructing a witness complex involves calculating the
distances between every point and every landmark, which has cost O(` log T ) if there are T points
and ` landmarks (using, e.g., a kd-tree algorithm). But this computation parallelizes beautifully;
moreover, `� T in practice—indeed, that is the point of the “coarsening” inherent in the witness
complex. Moreover, the dimension of each simplex is only high enough to cover the corresponding
part of the invariant set, whereas all of the grid elements in the cubical case necessarily have the
dimension of the ambient space. This means that Alg. 12 not only has fewer cells to process in the
simplicial case, but also far fewer neighbors to check. For all of these reasons, the overall complexity
in computing the homology of a witness complex is substantially lower than that of the cubical
grid case. Note, too, that the cellular witness map is automatically an outer approximation if the
conditions of Thm. 7 are satisfied.

The memory costs of the two approaches also arise in different ways. Informally speaking, in
order to use a cubical grid to capture the dynamics with the same fidelity as a witness complex
constructed from landmarks whose minimum spacing is β, one would need to use grid elements of
size β/

√
d, where d is the dimension of the ambient space. The number of cells in this grid would

be larger than the number of d-dimensional simplices in the corresponding witness complex. This
effect, which holds even if one disregards empty grid cells, may not be significant in low dimensions
and small data sets, but can become an issue if the data are large and/or high-dimensional. More-
over, if the landmarks are spaced uniformly in time along the trajectory, that spacing—and the
geometry of the witness complex—naturally adapts to the dynamics. Cubical grids do not share
this advantageous property.

Another important difference arises in storing the complex in the computer’s memory. There
are a number of extremely efficient ways to store information about which cells of a cubical grid
are occupied by data points. The free-form nature of simplices would appear to make storing
information about them (points, edges, faces, etc.) more of a challenge, but that cost can be
mitigated by using creative algorithms. Note, for instance, that if one stores the results of the
witness-landmark calculations mentioned above in the form of a linked list whose tth element
contains a list of the landmarks that are witnessed by the tth data point, sorted in increasing order
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by distance, that data structure contains all of the information one needs to describe the witness
complex. Algorithmic creativity can lower the expense of working with that data structure; we are
currently investigating an approach that stores the witness relationships in bitmap data structures
and uses them as “masks” (together with logical operations) to find landmarks that are shared
between different sets of witnesses. And the clique assumption made here can be used to further
streamline this search, since all one needs to consider is the edges.

While we have not provided a test of these claims about computational efficiency on a large set
of high-dimensional data in this paper, we plan to do so in future work.

Finally, we would like to note that while building α-complexes is a computationally demanding
task in high dimensions, we never actually construct an α-complex. The only roles of that construct
in this work are as a vehicle for extending the proofs of [KMM04] to the simplicial case.
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